Upload modeling_recast_llama.py with huggingface_hub
Browse files- modeling_recast_llama.py +843 -0
modeling_recast_llama.py
ADDED
|
@@ -0,0 +1,843 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# filename: recastmlp_llama_model.py
|
| 2 |
+
from .configuration_recast_llama import RECAST1B_llama
|
| 3 |
+
from transformers import PreTrainedModel
|
| 4 |
+
import math
|
| 5 |
+
import torch
|
| 6 |
+
import torch.nn as nn
|
| 7 |
+
import torch.nn.functional as F
|
| 8 |
+
from typing import Optional, Tuple, Union, List
|
| 9 |
+
from transformers import AutoConfig
|
| 10 |
+
from transformers.utils import logging
|
| 11 |
+
from transformers.cache_utils import Cache, StaticCache
|
| 12 |
+
from transformers.modeling_outputs import CausalLMOutputWithPast
|
| 13 |
+
from transformers.generation import GenerationMixin
|
| 14 |
+
from transformers.modeling_attn_mask_utils import AttentionMaskConverter
|
| 15 |
+
from transformers.models.llama.modeling_llama import (
|
| 16 |
+
LlamaDecoderLayer,
|
| 17 |
+
LlamaRotaryEmbedding,
|
| 18 |
+
LlamaRMSNorm,
|
| 19 |
+
apply_rotary_pos_emb,
|
| 20 |
+
repeat_kv,
|
| 21 |
+
)
|
| 22 |
+
from transformers.modeling_outputs import BaseModelOutputWithPast
|
| 23 |
+
|
| 24 |
+
logger = logging.get_logger(__name__)
|
| 25 |
+
|
| 26 |
+
|
| 27 |
+
class MLPTemplateBank(nn.Module):
|
| 28 |
+
def __init__(self, config, coef_rows, coef_columns):
|
| 29 |
+
super().__init__()
|
| 30 |
+
self.hidden_size = config.hidden_size
|
| 31 |
+
self.intermediate_size = config.intermediate_size
|
| 32 |
+
self.coef_shape = (coef_rows, coef_columns)
|
| 33 |
+
|
| 34 |
+
assert coef_columns is not None, "coef_columns must not be None"
|
| 35 |
+
|
| 36 |
+
# Ensure divisibility for proper reshaping
|
| 37 |
+
assert (self.hidden_size * self.intermediate_size) % coef_rows == 0, \
|
| 38 |
+
f"hidden_size * intermediate_size ({self.hidden_size * self.intermediate_size}) must be divisible by coef_rows ({coef_rows})"
|
| 39 |
+
|
| 40 |
+
template_size = self.hidden_size * self.intermediate_size // coef_rows
|
| 41 |
+
|
| 42 |
+
self.up_templates = nn.Parameter(
|
| 43 |
+
torch.randn(coef_columns, template_size)
|
| 44 |
+
)
|
| 45 |
+
self.gate_templates = nn.Parameter(
|
| 46 |
+
torch.randn(coef_columns, template_size)
|
| 47 |
+
)
|
| 48 |
+
|
| 49 |
+
# Better initialization
|
| 50 |
+
nn.init.xavier_uniform_(self.up_templates)
|
| 51 |
+
nn.init.xavier_uniform_(self.gate_templates)
|
| 52 |
+
|
| 53 |
+
def forward(self, up_coeffs, gate_coeffs):
|
| 54 |
+
# Compute chunked weights
|
| 55 |
+
up_chunks = torch.matmul(up_coeffs, self.up_templates)
|
| 56 |
+
gate_chunks = torch.matmul(gate_coeffs, self.gate_templates)
|
| 57 |
+
|
| 58 |
+
# Reshape to final weight matrices
|
| 59 |
+
up_weights = up_chunks.reshape(self.intermediate_size, self.hidden_size)
|
| 60 |
+
gate_weights = gate_chunks.reshape(self.intermediate_size, self.hidden_size)
|
| 61 |
+
|
| 62 |
+
return up_weights, gate_weights
|
| 63 |
+
|
| 64 |
+
class SharedLlamaMLP(nn.Module):
|
| 65 |
+
def __init__(self, config, bank):
|
| 66 |
+
super().__init__()
|
| 67 |
+
self.config = config
|
| 68 |
+
self.bank = bank
|
| 69 |
+
self.hidden_size = config.hidden_size
|
| 70 |
+
self.intermediate_size = config.intermediate_size
|
| 71 |
+
self.down_proj = nn.Linear(config.intermediate_size, config.hidden_size, bias=False)
|
| 72 |
+
|
| 73 |
+
# Initialize coefficients with proper shapes
|
| 74 |
+
self.up_coefficients = nn.Parameter(torch.randn(bank.coef_shape))
|
| 75 |
+
self.gate_coefficients = nn.Parameter(torch.randn(bank.coef_shape))
|
| 76 |
+
|
| 77 |
+
# Initialize with small random values instead of ones, then orthogonalize
|
| 78 |
+
nn.init.orthogonal_(self.up_coefficients)
|
| 79 |
+
nn.init.orthogonal_(self.gate_coefficients)
|
| 80 |
+
|
| 81 |
+
if config.mlp_bias:
|
| 82 |
+
self.gate_bias = nn.Parameter(torch.zeros(self.intermediate_size))
|
| 83 |
+
self.up_bias = nn.Parameter(torch.zeros(self.intermediate_size))
|
| 84 |
+
else:
|
| 85 |
+
self.register_parameter("gate_bias", None)
|
| 86 |
+
self.register_parameter("up_bias", None)
|
| 87 |
+
|
| 88 |
+
self.act_fn = F.silu
|
| 89 |
+
|
| 90 |
+
def forward(self, x):
|
| 91 |
+
# Generate weights using template bank
|
| 92 |
+
up_weights, gate_weights = self.bank(
|
| 93 |
+
self.up_coefficients,
|
| 94 |
+
self.gate_coefficients # Fixed order
|
| 95 |
+
)
|
| 96 |
+
|
| 97 |
+
# Apply SwiGLU: SiLU(gate * x) * up * x
|
| 98 |
+
hidden_states = self.act_fn(F.linear(x, gate_weights, self.gate_bias)) * F.linear(x, up_weights, self.up_bias)
|
| 99 |
+
output = self.down_proj(hidden_states)
|
| 100 |
+
|
| 101 |
+
return output
|
| 102 |
+
|
| 103 |
+
class AttTemplateBank(nn.Module):
|
| 104 |
+
def __init__(self, config, coef_rows, coef_columns):
|
| 105 |
+
super().__init__()
|
| 106 |
+
self.hidden_size = config.hidden_size
|
| 107 |
+
self.num_heads = config.num_attention_heads
|
| 108 |
+
self.head_dim = config.hidden_size // config.num_attention_heads
|
| 109 |
+
self.num_key_value_heads = getattr(config, 'num_key_value_heads', config.num_attention_heads)
|
| 110 |
+
self.kv_dim = self.num_key_value_heads * self.head_dim
|
| 111 |
+
self.coef_shape = (coef_rows, coef_columns)
|
| 112 |
+
|
| 113 |
+
# Ensure divisibility
|
| 114 |
+
assert (self.hidden_size * self.hidden_size) % coef_rows == 0, \
|
| 115 |
+
"Q projection size must be divisible by coef_rows"
|
| 116 |
+
assert (self.kv_dim * self.hidden_size) % coef_rows == 0, \
|
| 117 |
+
"K/V projection size must be divisible by coef_rows"
|
| 118 |
+
|
| 119 |
+
# Create templates for Q, K, V
|
| 120 |
+
self.q_templates = nn.Parameter(
|
| 121 |
+
torch.randn(coef_columns, self.hidden_size * self.hidden_size // coef_rows)
|
| 122 |
+
)
|
| 123 |
+
self.k_templates = nn.Parameter(
|
| 124 |
+
torch.randn(coef_columns, self.kv_dim * self.hidden_size // coef_rows)
|
| 125 |
+
)
|
| 126 |
+
self.v_templates = nn.Parameter(
|
| 127 |
+
torch.randn(coef_columns, self.kv_dim * self.hidden_size // coef_rows)
|
| 128 |
+
)
|
| 129 |
+
|
| 130 |
+
# Initialize templates
|
| 131 |
+
nn.init.xavier_uniform_(self.q_templates)
|
| 132 |
+
nn.init.xavier_uniform_(self.k_templates)
|
| 133 |
+
nn.init.xavier_uniform_(self.v_templates)
|
| 134 |
+
|
| 135 |
+
def forward(self, q_coeffs, k_coeffs, v_coeffs):
|
| 136 |
+
# Compute chunked weights
|
| 137 |
+
q_chunks = torch.matmul(q_coeffs, self.q_templates)
|
| 138 |
+
k_chunks = torch.matmul(k_coeffs, self.k_templates)
|
| 139 |
+
v_chunks = torch.matmul(v_coeffs, self.v_templates)
|
| 140 |
+
|
| 141 |
+
# Reshape to final weight matrices
|
| 142 |
+
q_weights = q_chunks.reshape(self.hidden_size, self.hidden_size)
|
| 143 |
+
k_weights = k_chunks.reshape(self.kv_dim, self.hidden_size)
|
| 144 |
+
v_weights = v_chunks.reshape(self.kv_dim, self.hidden_size)
|
| 145 |
+
|
| 146 |
+
return q_weights, k_weights, v_weights
|
| 147 |
+
|
| 148 |
+
class SharedLlamaAttention(nn.Module):
|
| 149 |
+
def __init__(self, config, layer_idx: Optional[int] = None, bank: Optional[AttTemplateBank] = None):
|
| 150 |
+
super().__init__()
|
| 151 |
+
self.config = config
|
| 152 |
+
self.bank = bank
|
| 153 |
+
self.layer_idx = layer_idx
|
| 154 |
+
self.attention_dropout = config.attention_dropout
|
| 155 |
+
self.hidden_size = config.hidden_size
|
| 156 |
+
self.num_heads = config.num_attention_heads
|
| 157 |
+
self.head_dim = self.hidden_size // self.num_heads
|
| 158 |
+
self.num_key_value_heads = getattr(config, 'num_key_value_heads', config.num_attention_heads)
|
| 159 |
+
self.num_key_value_groups = self.num_heads // self.num_key_value_heads
|
| 160 |
+
self.max_position_embeddings = config.max_position_embeddings
|
| 161 |
+
self.rope_theta = getattr(config, 'rope_theta', 10000.0)
|
| 162 |
+
self.is_causal = True
|
| 163 |
+
|
| 164 |
+
self.o_proj = nn.Linear(self.hidden_size, self.hidden_size, bias=getattr(config, 'attention_bias', False))
|
| 165 |
+
self.rotary_emb = LlamaRotaryEmbedding(config=self.config)
|
| 166 |
+
|
| 167 |
+
# Initialize coefficients with proper shapes
|
| 168 |
+
self.q_coefficients = nn.Parameter(torch.randn(bank.coef_shape))
|
| 169 |
+
self.k_coefficients = nn.Parameter(torch.randn(bank.coef_shape))
|
| 170 |
+
self.v_coefficients = nn.Parameter(torch.randn(bank.coef_shape))
|
| 171 |
+
|
| 172 |
+
# Initialize with small random values
|
| 173 |
+
nn.init.orthogonal_(self.q_coefficients)
|
| 174 |
+
nn.init.orthogonal_(self.k_coefficients)
|
| 175 |
+
nn.init.orthogonal_(self.v_coefficients)
|
| 176 |
+
|
| 177 |
+
def forward(
|
| 178 |
+
self,
|
| 179 |
+
hidden_states,
|
| 180 |
+
attention_mask=None,
|
| 181 |
+
past_key_value=None,
|
| 182 |
+
cache_position=None,
|
| 183 |
+
position_embeddings=None,
|
| 184 |
+
position_ids=None,
|
| 185 |
+
output_attentions=False,
|
| 186 |
+
use_cache=False,
|
| 187 |
+
**kwargs,
|
| 188 |
+
):
|
| 189 |
+
bsz, q_len, _ = hidden_states.size()
|
| 190 |
+
|
| 191 |
+
# Generate weights using template bank
|
| 192 |
+
q_weights, k_weights, v_weights = self.bank(
|
| 193 |
+
self.q_coefficients,
|
| 194 |
+
self.k_coefficients,
|
| 195 |
+
self.v_coefficients
|
| 196 |
+
)
|
| 197 |
+
|
| 198 |
+
# Apply projections
|
| 199 |
+
query_states = F.linear(hidden_states, q_weights)
|
| 200 |
+
key_states = F.linear(hidden_states, k_weights)
|
| 201 |
+
value_states = F.linear(hidden_states, v_weights)
|
| 202 |
+
|
| 203 |
+
# Reshape for multi-head attention
|
| 204 |
+
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
| 205 |
+
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
| 206 |
+
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
| 207 |
+
|
| 208 |
+
# Apply rotary embeddings
|
| 209 |
+
if position_embeddings is None:
|
| 210 |
+
cos, sin = self.rotary_emb(value_states, position_ids)
|
| 211 |
+
else:
|
| 212 |
+
cos, sin = position_embeddings
|
| 213 |
+
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
|
| 214 |
+
|
| 215 |
+
# Handle past key values
|
| 216 |
+
if past_key_value is not None:
|
| 217 |
+
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
|
| 218 |
+
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
|
| 219 |
+
|
| 220 |
+
# Repeat key/value for grouped query attention
|
| 221 |
+
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
| 222 |
+
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
| 223 |
+
|
| 224 |
+
# Compute attention
|
| 225 |
+
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
|
| 226 |
+
|
| 227 |
+
if attention_mask is not None:
|
| 228 |
+
causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
|
| 229 |
+
attn_weights = attn_weights + causal_mask
|
| 230 |
+
|
| 231 |
+
# Apply softmax and dropout
|
| 232 |
+
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
|
| 233 |
+
attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training)
|
| 234 |
+
attn_output = torch.matmul(attn_weights, value_states)
|
| 235 |
+
|
| 236 |
+
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
|
| 237 |
+
raise ValueError(
|
| 238 |
+
f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
|
| 239 |
+
f" {attn_output.size()}"
|
| 240 |
+
)
|
| 241 |
+
|
| 242 |
+
attn_output = attn_output.transpose(1, 2).contiguous()
|
| 243 |
+
attn_output = attn_output.reshape(bsz, q_len, -1)
|
| 244 |
+
attn_output = self.o_proj(attn_output)
|
| 245 |
+
|
| 246 |
+
if not output_attentions:
|
| 247 |
+
attn_weights = None
|
| 248 |
+
|
| 249 |
+
return attn_output, attn_weights, past_key_value
|
| 250 |
+
|
| 251 |
+
|
| 252 |
+
def fixed_cross_entropy(
|
| 253 |
+
source,
|
| 254 |
+
target,
|
| 255 |
+
num_items_in_batch: int = None,
|
| 256 |
+
ignore_index: int = -100,
|
| 257 |
+
**kwargs,
|
| 258 |
+
):
|
| 259 |
+
reduction = "sum" if num_items_in_batch is not None else "mean"
|
| 260 |
+
loss = nn.functional.cross_entropy(
|
| 261 |
+
source, target, ignore_index=ignore_index, reduction=reduction
|
| 262 |
+
)
|
| 263 |
+
if reduction == "sum":
|
| 264 |
+
loss = loss / num_items_in_batch
|
| 265 |
+
return loss
|
| 266 |
+
|
| 267 |
+
|
| 268 |
+
class RECAST1B_llamaModel(PreTrainedModel):
|
| 269 |
+
config_class = RECAST1B_llama
|
| 270 |
+
base_model_prefix = "llama"
|
| 271 |
+
supports_gradient_checkpointing = True
|
| 272 |
+
|
| 273 |
+
def __init__(self, config):
|
| 274 |
+
super().__init__(config)
|
| 275 |
+
self.padding_idx = config.pad_token_id
|
| 276 |
+
self.vocab_size = config.vocab_size
|
| 277 |
+
|
| 278 |
+
self.embed_tokens = nn.Embedding(
|
| 279 |
+
config.vocab_size, config.hidden_size, self.padding_idx
|
| 280 |
+
)
|
| 281 |
+
|
| 282 |
+
original_config = AutoConfig.from_pretrained(
|
| 283 |
+
"meta-llama/Llama-3.2-1b", trust_remote_code=True
|
| 284 |
+
)
|
| 285 |
+
self.rotary_emb = LlamaRotaryEmbedding(
|
| 286 |
+
config=original_config,
|
| 287 |
+
)
|
| 288 |
+
|
| 289 |
+
# Create template banks first
|
| 290 |
+
self.mlp_banks = []
|
| 291 |
+
self.attn_banks = []
|
| 292 |
+
layers_per_group = config.num_hidden_layers // config.num_groups
|
| 293 |
+
# Explicitly calculate coef_width if not provided in config
|
| 294 |
+
if hasattr(config, "coef_width") and config.coef_width is not None:
|
| 295 |
+
coef_width = config.coef_width
|
| 296 |
+
else:
|
| 297 |
+
coef_width = config.coef_height * layers_per_group
|
| 298 |
+
config.coef_width = coef_width
|
| 299 |
+
print(
|
| 300 |
+
f"Model config: num_groups={config.num_groups}, layers_per_group={layers_per_group}"
|
| 301 |
+
)
|
| 302 |
+
print(f"Coefficient shape: ({config.coef_height}, {config.coef_width})")
|
| 303 |
+
mlp_banks = nn.ModuleList(
|
| 304 |
+
[
|
| 305 |
+
MLPTemplateBank(
|
| 306 |
+
config=config, coef_rows=config.coef_height, coef_columns=coef_width
|
| 307 |
+
)
|
| 308 |
+
for _ in range(config.num_groups)
|
| 309 |
+
]
|
| 310 |
+
)
|
| 311 |
+
|
| 312 |
+
attn_banks = nn.ModuleList(
|
| 313 |
+
[
|
| 314 |
+
AttTemplateBank(
|
| 315 |
+
config=config, coef_rows=config.coef_height, coef_columns=coef_width
|
| 316 |
+
)
|
| 317 |
+
for _ in range(config.num_groups)
|
| 318 |
+
]
|
| 319 |
+
)
|
| 320 |
+
self.mlp_banks = mlp_banks
|
| 321 |
+
self.attn_banks = attn_banks
|
| 322 |
+
# Create layers using LlamaDecoderLayer but replace MLPs
|
| 323 |
+
self.layers = nn.ModuleList()
|
| 324 |
+
for layer_idx in range(config.num_hidden_layers):
|
| 325 |
+
# Create standard LlamaDecoderLayer
|
| 326 |
+
decoder_layer = LlamaDecoderLayer(config, layer_idx)
|
| 327 |
+
|
| 328 |
+
# Replace its MLP with our SharedLlamaMLP
|
| 329 |
+
group_idx = layer_idx // layers_per_group
|
| 330 |
+
decoder_layer.mlp = SharedLlamaMLP(config, self.mlp_banks[group_idx])
|
| 331 |
+
decoder_layer.self_attn = SharedLlamaAttention(
|
| 332 |
+
config, layer_idx, self.attn_banks[group_idx]
|
| 333 |
+
)
|
| 334 |
+
|
| 335 |
+
self.layers.append(decoder_layer)
|
| 336 |
+
|
| 337 |
+
self.norm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
| 338 |
+
self.gradient_checkpointing = False
|
| 339 |
+
|
| 340 |
+
def forward(
|
| 341 |
+
self,
|
| 342 |
+
input_ids: torch.LongTensor = None,
|
| 343 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 344 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 345 |
+
past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
|
| 346 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
| 347 |
+
use_cache: Optional[bool] = None,
|
| 348 |
+
output_attentions: Optional[bool] = None,
|
| 349 |
+
output_hidden_states: Optional[bool] = None,
|
| 350 |
+
return_dict: Optional[bool] = None,
|
| 351 |
+
cache_position: Optional[torch.LongTensor] = None,
|
| 352 |
+
**flash_attn_kwargs,
|
| 353 |
+
) -> Union[Tuple, BaseModelOutputWithPast]:
|
| 354 |
+
output_attentions = (
|
| 355 |
+
output_attentions
|
| 356 |
+
if output_attentions is not None
|
| 357 |
+
else self.config.output_attentions
|
| 358 |
+
)
|
| 359 |
+
output_hidden_states = (
|
| 360 |
+
output_hidden_states
|
| 361 |
+
if output_hidden_states is not None
|
| 362 |
+
else self.config.output_hidden_states
|
| 363 |
+
)
|
| 364 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
| 365 |
+
return_dict = (
|
| 366 |
+
return_dict if return_dict is not None else self.config.use_return_dict
|
| 367 |
+
)
|
| 368 |
+
|
| 369 |
+
if (input_ids is None) ^ (inputs_embeds is not None):
|
| 370 |
+
raise ValueError(
|
| 371 |
+
"You must specify exactly one of input_ids or inputs_embeds"
|
| 372 |
+
)
|
| 373 |
+
|
| 374 |
+
if self.gradient_checkpointing and self.training and use_cache:
|
| 375 |
+
logger.warning_once(
|
| 376 |
+
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`."
|
| 377 |
+
)
|
| 378 |
+
use_cache = False
|
| 379 |
+
|
| 380 |
+
if inputs_embeds is None:
|
| 381 |
+
inputs_embeds = self.embed_tokens(input_ids)
|
| 382 |
+
# Set up cache position if not provided
|
| 383 |
+
if cache_position is None:
|
| 384 |
+
past_seen_tokens = (
|
| 385 |
+
0
|
| 386 |
+
if past_key_values is None
|
| 387 |
+
else (
|
| 388 |
+
past_key_values.get_seq_length()
|
| 389 |
+
if isinstance(past_key_values, Cache)
|
| 390 |
+
else past_key_values[0][0].size(-2) if past_key_values else 0
|
| 391 |
+
)
|
| 392 |
+
)
|
| 393 |
+
cache_position = torch.arange(
|
| 394 |
+
past_seen_tokens,
|
| 395 |
+
past_seen_tokens + inputs_embeds.shape[1],
|
| 396 |
+
device=inputs_embeds.device,
|
| 397 |
+
)
|
| 398 |
+
# Create position embeddings to be shared across the decoder layers
|
| 399 |
+
# Set up position IDs if not provided
|
| 400 |
+
if position_ids is None:
|
| 401 |
+
position_ids = cache_position.unsqueeze(0)
|
| 402 |
+
# Get updated causal mask
|
| 403 |
+
causal_mask = self._update_causal_mask(
|
| 404 |
+
attention_mask,
|
| 405 |
+
inputs_embeds,
|
| 406 |
+
cache_position,
|
| 407 |
+
past_key_values,
|
| 408 |
+
output_attentions,
|
| 409 |
+
)
|
| 410 |
+
hidden_states = inputs_embeds
|
| 411 |
+
position_embeddings = self.rotary_emb(hidden_states, position_ids)
|
| 412 |
+
|
| 413 |
+
# Initialize outputs
|
| 414 |
+
all_hidden_states = () if output_hidden_states else None
|
| 415 |
+
all_self_attns = () if output_attentions else None
|
| 416 |
+
next_decoder_cache = None
|
| 417 |
+
|
| 418 |
+
# Process through layers
|
| 419 |
+
for decoder_layer in self.layers:
|
| 420 |
+
if output_hidden_states:
|
| 421 |
+
all_hidden_states += (hidden_states,)
|
| 422 |
+
|
| 423 |
+
if self.gradient_checkpointing and self.training:
|
| 424 |
+
layer_outputs = self._gradient_checkpointing_func(
|
| 425 |
+
decoder_layer.__call__,
|
| 426 |
+
hidden_states,
|
| 427 |
+
causal_mask,
|
| 428 |
+
position_ids,
|
| 429 |
+
past_key_values,
|
| 430 |
+
output_attentions,
|
| 431 |
+
use_cache,
|
| 432 |
+
position_embeddings,
|
| 433 |
+
)
|
| 434 |
+
else:
|
| 435 |
+
layer_outputs = decoder_layer(
|
| 436 |
+
hidden_states,
|
| 437 |
+
attention_mask=causal_mask,
|
| 438 |
+
position_ids=position_ids,
|
| 439 |
+
past_key_value=past_key_values,
|
| 440 |
+
output_attentions=output_attentions,
|
| 441 |
+
use_cache=use_cache,
|
| 442 |
+
position_embeddings=position_embeddings,
|
| 443 |
+
**flash_attn_kwargs,
|
| 444 |
+
)
|
| 445 |
+
|
| 446 |
+
hidden_states = layer_outputs[0]
|
| 447 |
+
|
| 448 |
+
if use_cache:
|
| 449 |
+
next_decoder_cache = layer_outputs[2 if output_attentions else 1]
|
| 450 |
+
|
| 451 |
+
if output_attentions:
|
| 452 |
+
all_self_attns += (layer_outputs[1],)
|
| 453 |
+
|
| 454 |
+
# Final layer norm
|
| 455 |
+
hidden_states = self.norm(hidden_states)
|
| 456 |
+
|
| 457 |
+
# Add last hidden state
|
| 458 |
+
if output_hidden_states:
|
| 459 |
+
all_hidden_states += (hidden_states,)
|
| 460 |
+
|
| 461 |
+
next_cache = next_decoder_cache if use_cache else None
|
| 462 |
+
|
| 463 |
+
if not return_dict:
|
| 464 |
+
return tuple(
|
| 465 |
+
v
|
| 466 |
+
for v in [hidden_states, next_cache, all_hidden_states, all_self_attns]
|
| 467 |
+
if v is not None
|
| 468 |
+
)
|
| 469 |
+
|
| 470 |
+
return BaseModelOutputWithPast(
|
| 471 |
+
last_hidden_state=hidden_states,
|
| 472 |
+
past_key_values=next_cache,
|
| 473 |
+
hidden_states=all_hidden_states,
|
| 474 |
+
attentions=all_self_attns,
|
| 475 |
+
)
|
| 476 |
+
|
| 477 |
+
@classmethod
|
| 478 |
+
def from_pretrained(cls, pretrained_model_name_or_path, *model_args, **kwargs):
|
| 479 |
+
if isinstance(
|
| 480 |
+
pretrained_model_name_or_path, str
|
| 481 |
+
) and pretrained_model_name_or_path.endswith(".pt"):
|
| 482 |
+
print("Loading from local checkpoint")
|
| 483 |
+
# Load from local checkpoint
|
| 484 |
+
config = kwargs.get("config", None)
|
| 485 |
+
if config is None:
|
| 486 |
+
config = AutoConfig.from_pretrained(
|
| 487 |
+
pretrained_model_name_or_path, trust_remote_code=True
|
| 488 |
+
)
|
| 489 |
+
|
| 490 |
+
model = cls(config)
|
| 491 |
+
checkpoint = torch.load(pretrained_model_name_or_path, map_location="cpu")
|
| 492 |
+
state_dict = checkpoint["model_state_dict"]
|
| 493 |
+
logger.info(
|
| 494 |
+
f"Loaded checkpoint from epoch {checkpoint.get('epoch')} with loss {checkpoint.get('loss')}"
|
| 495 |
+
)
|
| 496 |
+
|
| 497 |
+
missing_keys, unexpected_keys = model.load_state_dict(
|
| 498 |
+
state_dict, strict=False
|
| 499 |
+
)
|
| 500 |
+
|
| 501 |
+
if len(missing_keys) > 0:
|
| 502 |
+
logger.warning(f"Missing keys: {missing_keys}")
|
| 503 |
+
if len(unexpected_keys) > 0:
|
| 504 |
+
logger.warning(f"Unexpected keys: {unexpected_keys}")
|
| 505 |
+
|
| 506 |
+
return model
|
| 507 |
+
else:
|
| 508 |
+
print("Loading from hub")
|
| 509 |
+
# Load from hub using parent's from_pretrained
|
| 510 |
+
return super().from_pretrained(
|
| 511 |
+
pretrained_model_name_or_path, *model_args, **kwargs
|
| 512 |
+
)
|
| 513 |
+
|
| 514 |
+
def get_input_embeddings(self):
|
| 515 |
+
return self.embed_tokens
|
| 516 |
+
|
| 517 |
+
def set_input_embeddings(self, value):
|
| 518 |
+
self.embed_tokens = value
|
| 519 |
+
|
| 520 |
+
def _update_causal_mask(
|
| 521 |
+
self,
|
| 522 |
+
attention_mask: torch.Tensor,
|
| 523 |
+
input_tensor: torch.Tensor,
|
| 524 |
+
cache_position: torch.Tensor,
|
| 525 |
+
past_key_values: Cache,
|
| 526 |
+
output_attentions: bool,
|
| 527 |
+
):
|
| 528 |
+
if self.config._attn_implementation == "flash_attention_2":
|
| 529 |
+
if attention_mask is not None and 0.0 in attention_mask:
|
| 530 |
+
return attention_mask
|
| 531 |
+
return None
|
| 532 |
+
|
| 533 |
+
# For SDPA, when possible, we will rely on its `is_causal` argument instead of its `attn_mask` argument, in
|
| 534 |
+
# order to dispatch on Flash Attention 2. This feature is not compatible with static cache, as SDPA will fail
|
| 535 |
+
# to infer the attention mask.
|
| 536 |
+
past_seen_tokens = (
|
| 537 |
+
past_key_values.get_seq_length() if past_key_values is not None else 0
|
| 538 |
+
)
|
| 539 |
+
using_static_cache = isinstance(past_key_values, StaticCache)
|
| 540 |
+
|
| 541 |
+
# When output attentions is True, sdpa implementation's forward method calls the eager implementation's forward
|
| 542 |
+
if (
|
| 543 |
+
self.config._attn_implementation == "sdpa"
|
| 544 |
+
and not using_static_cache
|
| 545 |
+
and not output_attentions
|
| 546 |
+
):
|
| 547 |
+
if AttentionMaskConverter._ignore_causal_mask_sdpa(
|
| 548 |
+
attention_mask,
|
| 549 |
+
inputs_embeds=input_tensor,
|
| 550 |
+
past_key_values_length=past_seen_tokens,
|
| 551 |
+
is_training=self.training,
|
| 552 |
+
):
|
| 553 |
+
return None
|
| 554 |
+
|
| 555 |
+
dtype, device = input_tensor.dtype, input_tensor.device
|
| 556 |
+
sequence_length = input_tensor.shape[1]
|
| 557 |
+
if using_static_cache:
|
| 558 |
+
target_length = past_key_values.get_max_cache_shape()
|
| 559 |
+
else:
|
| 560 |
+
target_length = (
|
| 561 |
+
attention_mask.shape[-1]
|
| 562 |
+
if isinstance(attention_mask, torch.Tensor)
|
| 563 |
+
else past_seen_tokens + sequence_length + 1
|
| 564 |
+
)
|
| 565 |
+
|
| 566 |
+
# In case the provided `attention` mask is 2D, we generate a causal mask here (4D).
|
| 567 |
+
causal_mask = self._prepare_4d_causal_attention_mask_with_cache_position(
|
| 568 |
+
attention_mask,
|
| 569 |
+
sequence_length=sequence_length,
|
| 570 |
+
target_length=target_length,
|
| 571 |
+
dtype=dtype,
|
| 572 |
+
device=device,
|
| 573 |
+
cache_position=cache_position,
|
| 574 |
+
batch_size=input_tensor.shape[0],
|
| 575 |
+
)
|
| 576 |
+
|
| 577 |
+
if (
|
| 578 |
+
self.config._attn_implementation == "sdpa"
|
| 579 |
+
and attention_mask is not None
|
| 580 |
+
and attention_mask.device.type == "cuda"
|
| 581 |
+
and not output_attentions
|
| 582 |
+
):
|
| 583 |
+
# Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when
|
| 584 |
+
# using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path.
|
| 585 |
+
# Details: https://github.com/pytorch/pytorch/issues/110213
|
| 586 |
+
min_dtype = torch.finfo(dtype).min
|
| 587 |
+
causal_mask = AttentionMaskConverter._unmask_unattended(
|
| 588 |
+
causal_mask, min_dtype
|
| 589 |
+
)
|
| 590 |
+
|
| 591 |
+
return causal_mask
|
| 592 |
+
|
| 593 |
+
@staticmethod
|
| 594 |
+
def _prepare_4d_causal_attention_mask_with_cache_position(
|
| 595 |
+
attention_mask: torch.Tensor,
|
| 596 |
+
sequence_length: int,
|
| 597 |
+
target_length: int,
|
| 598 |
+
dtype: torch.dtype,
|
| 599 |
+
device: torch.device,
|
| 600 |
+
cache_position: torch.Tensor,
|
| 601 |
+
batch_size: int,
|
| 602 |
+
**kwargs,
|
| 603 |
+
):
|
| 604 |
+
if attention_mask is not None and attention_mask.dim() == 4:
|
| 605 |
+
# In this case we assume that the mask comes already in inverted form and requires no inversion or slicing.
|
| 606 |
+
causal_mask = attention_mask
|
| 607 |
+
else:
|
| 608 |
+
min_dtype = torch.finfo(dtype).min
|
| 609 |
+
causal_mask = torch.full(
|
| 610 |
+
(sequence_length, target_length),
|
| 611 |
+
fill_value=min_dtype,
|
| 612 |
+
dtype=dtype,
|
| 613 |
+
device=device,
|
| 614 |
+
)
|
| 615 |
+
if sequence_length != 1:
|
| 616 |
+
causal_mask = torch.triu(causal_mask, diagonal=1)
|
| 617 |
+
causal_mask *= torch.arange(
|
| 618 |
+
target_length, device=device
|
| 619 |
+
) > cache_position.reshape(-1, 1)
|
| 620 |
+
causal_mask = causal_mask[None, None, :, :].expand(batch_size, 1, -1, -1)
|
| 621 |
+
if attention_mask is not None:
|
| 622 |
+
causal_mask = (
|
| 623 |
+
causal_mask.clone()
|
| 624 |
+
) # copy to contiguous memory for in-place edit
|
| 625 |
+
mask_length = attention_mask.shape[-1]
|
| 626 |
+
padding_mask = (
|
| 627 |
+
causal_mask[:, :, :, :mask_length]
|
| 628 |
+
+ attention_mask[:, None, None, :]
|
| 629 |
+
)
|
| 630 |
+
padding_mask = padding_mask == 0
|
| 631 |
+
causal_mask[:, :, :, :mask_length] = causal_mask[
|
| 632 |
+
:, :, :, :mask_length
|
| 633 |
+
].masked_fill(padding_mask, min_dtype)
|
| 634 |
+
|
| 635 |
+
return causal_mask
|
| 636 |
+
|
| 637 |
+
|
| 638 |
+
class RECAST1B_LlamaForCausalLM(PreTrainedModel, GenerationMixin):
|
| 639 |
+
_tied_weights_keys = ["lm_head.weight"]
|
| 640 |
+
_tp_plan = {"lm_head": "colwise_rep"}
|
| 641 |
+
config_class = RECAST1B_llama
|
| 642 |
+
base_model_prefix = "llama"
|
| 643 |
+
supports_gradient_checkpointing = True
|
| 644 |
+
|
| 645 |
+
def __init__(self, config):
|
| 646 |
+
super().__init__(config)
|
| 647 |
+
self.model = RECAST1B_llamaModel(config)
|
| 648 |
+
self.vocab_size = config.vocab_size
|
| 649 |
+
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
| 650 |
+
|
| 651 |
+
# Initialize weights and apply final processing
|
| 652 |
+
self.post_init()
|
| 653 |
+
|
| 654 |
+
def get_input_embeddings(self):
|
| 655 |
+
return self.model.embed_tokens
|
| 656 |
+
|
| 657 |
+
def set_input_embeddings(self, value):
|
| 658 |
+
self.model.embed_tokens = value
|
| 659 |
+
|
| 660 |
+
def get_output_embeddings(self):
|
| 661 |
+
return self.lm_head
|
| 662 |
+
|
| 663 |
+
def set_output_embeddings(self, new_embeddings):
|
| 664 |
+
self.lm_head = new_embeddings
|
| 665 |
+
|
| 666 |
+
def set_decoder(self, decoder):
|
| 667 |
+
self.model = decoder
|
| 668 |
+
|
| 669 |
+
def get_decoder(self):
|
| 670 |
+
return self.model
|
| 671 |
+
|
| 672 |
+
def loss_function(
|
| 673 |
+
self,
|
| 674 |
+
logits,
|
| 675 |
+
labels,
|
| 676 |
+
vocab_size: int,
|
| 677 |
+
num_items_in_batch: int = None,
|
| 678 |
+
ignore_index: int = -100,
|
| 679 |
+
**kwargs,
|
| 680 |
+
):
|
| 681 |
+
# Upcast to float if we need to compute the loss to avoid potential precision issues
|
| 682 |
+
logits = logits.float()
|
| 683 |
+
# Shift so that tokens < n predict n
|
| 684 |
+
shift_logits = logits[..., :-1, :].contiguous()
|
| 685 |
+
shift_labels = labels[..., 1:].contiguous()
|
| 686 |
+
# Flatten the tokens
|
| 687 |
+
shift_logits = shift_logits.view(-1, vocab_size)
|
| 688 |
+
shift_labels = shift_labels.view(-1)
|
| 689 |
+
# Enable model parallelism
|
| 690 |
+
shift_labels = shift_labels.to(shift_logits.device)
|
| 691 |
+
loss = fixed_cross_entropy(
|
| 692 |
+
shift_logits, shift_labels, num_items_in_batch, ignore_index, **kwargs
|
| 693 |
+
)
|
| 694 |
+
return loss
|
| 695 |
+
|
| 696 |
+
def forward(
|
| 697 |
+
self,
|
| 698 |
+
input_ids: torch.LongTensor = None,
|
| 699 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 700 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 701 |
+
past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
|
| 702 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
| 703 |
+
labels: Optional[torch.LongTensor] = None,
|
| 704 |
+
use_cache: Optional[bool] = None,
|
| 705 |
+
output_attentions: Optional[bool] = None,
|
| 706 |
+
output_hidden_states: Optional[bool] = None,
|
| 707 |
+
return_dict: Optional[bool] = None,
|
| 708 |
+
cache_position: Optional[torch.LongTensor] = None,
|
| 709 |
+
num_logits_to_keep: int = 0,
|
| 710 |
+
**kwargs,
|
| 711 |
+
) -> Union[Tuple, CausalLMOutputWithPast]:
|
| 712 |
+
"""
|
| 713 |
+
Args:
|
| 714 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
| 715 |
+
Labels for computing the masked language modeling loss. Indices should be in
|
| 716 |
+
`[0, ..., config.vocab_size]` or -100 (masked tokens).
|
| 717 |
+
num_logits_to_keep (`int`, *optional*):
|
| 718 |
+
Calculate logits for the last `num_logits_to_keep` tokens. If `0`, calculate all logits.
|
| 719 |
+
"""
|
| 720 |
+
output_attentions = (
|
| 721 |
+
output_attentions
|
| 722 |
+
if output_attentions is not None
|
| 723 |
+
else self.config.output_attentions
|
| 724 |
+
)
|
| 725 |
+
output_hidden_states = (
|
| 726 |
+
output_hidden_states
|
| 727 |
+
if output_hidden_states is not None
|
| 728 |
+
else self.config.output_hidden_states
|
| 729 |
+
)
|
| 730 |
+
return_dict = (
|
| 731 |
+
return_dict if return_dict is not None else self.config.use_return_dict
|
| 732 |
+
)
|
| 733 |
+
|
| 734 |
+
outputs = self.model(
|
| 735 |
+
input_ids=input_ids,
|
| 736 |
+
attention_mask=attention_mask,
|
| 737 |
+
position_ids=position_ids,
|
| 738 |
+
past_key_values=past_key_values,
|
| 739 |
+
inputs_embeds=inputs_embeds,
|
| 740 |
+
use_cache=use_cache,
|
| 741 |
+
output_attentions=output_attentions,
|
| 742 |
+
output_hidden_states=output_hidden_states,
|
| 743 |
+
return_dict=return_dict,
|
| 744 |
+
cache_position=cache_position,
|
| 745 |
+
**kwargs,
|
| 746 |
+
)
|
| 747 |
+
|
| 748 |
+
hidden_states = outputs[0]
|
| 749 |
+
# Only compute necessary logits
|
| 750 |
+
logits = self.lm_head(hidden_states[:, -num_logits_to_keep:, :])
|
| 751 |
+
|
| 752 |
+
loss = None
|
| 753 |
+
if labels is not None:
|
| 754 |
+
# Calculate batch size for loss function
|
| 755 |
+
num_items_in_batch = (
|
| 756 |
+
input_ids.size(0) if input_ids is not None else inputs_embeds.size(0)
|
| 757 |
+
)
|
| 758 |
+
loss = self.loss_function(
|
| 759 |
+
logits=logits,
|
| 760 |
+
labels=labels,
|
| 761 |
+
vocab_size=self.config.vocab_size,
|
| 762 |
+
num_items_in_batch=num_items_in_batch,
|
| 763 |
+
**kwargs,
|
| 764 |
+
)
|
| 765 |
+
|
| 766 |
+
if not return_dict:
|
| 767 |
+
output = (logits,) + outputs[1:]
|
| 768 |
+
return (loss,) + output if loss is not None else output
|
| 769 |
+
|
| 770 |
+
return CausalLMOutputWithPast(
|
| 771 |
+
loss=loss,
|
| 772 |
+
logits=logits,
|
| 773 |
+
past_key_values=outputs.past_key_values,
|
| 774 |
+
hidden_states=outputs.hidden_states,
|
| 775 |
+
attentions=outputs.attentions,
|
| 776 |
+
)
|
| 777 |
+
|
| 778 |
+
def prepare_inputs_for_generation(
|
| 779 |
+
self,
|
| 780 |
+
input_ids,
|
| 781 |
+
past_key_values=None,
|
| 782 |
+
attention_mask=None,
|
| 783 |
+
inputs_embeds=None,
|
| 784 |
+
**kwargs,
|
| 785 |
+
):
|
| 786 |
+
if past_key_values:
|
| 787 |
+
input_ids = input_ids[:, -1:]
|
| 788 |
+
|
| 789 |
+
position_ids = kwargs.get("position_ids", None)
|
| 790 |
+
if attention_mask is not None and position_ids is None:
|
| 791 |
+
# create position_ids on the fly for batch generation
|
| 792 |
+
position_ids = attention_mask.long().cumsum(-1) - 1
|
| 793 |
+
position_ids.masked_fill_(attention_mask == 0, 1)
|
| 794 |
+
if past_key_values:
|
| 795 |
+
position_ids = position_ids[:, -1].unsqueeze(-1)
|
| 796 |
+
|
| 797 |
+
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
|
| 798 |
+
if inputs_embeds is not None and past_key_values is None:
|
| 799 |
+
model_inputs = {"inputs_embeds": inputs_embeds}
|
| 800 |
+
else:
|
| 801 |
+
model_inputs = {"input_ids": input_ids}
|
| 802 |
+
|
| 803 |
+
model_inputs.update(
|
| 804 |
+
{
|
| 805 |
+
"position_ids": position_ids,
|
| 806 |
+
"past_key_values": past_key_values,
|
| 807 |
+
"use_cache": kwargs.get("use_cache"),
|
| 808 |
+
"attention_mask": attention_mask,
|
| 809 |
+
}
|
| 810 |
+
)
|
| 811 |
+
return model_inputs
|
| 812 |
+
|
| 813 |
+
@classmethod
|
| 814 |
+
def from_pretrained(cls, pretrained_model_name_or_path, *model_args, **kwargs):
|
| 815 |
+
if isinstance(
|
| 816 |
+
pretrained_model_name_or_path, str
|
| 817 |
+
) and pretrained_model_name_or_path.endswith(".pt"):
|
| 818 |
+
print("Loading from local checkpoint")
|
| 819 |
+
config = kwargs.get("config", None)
|
| 820 |
+
if config is None:
|
| 821 |
+
config = AutoConfig.from_pretrained(
|
| 822 |
+
pretrained_model_name_or_path, trust_remote_code=True
|
| 823 |
+
)
|
| 824 |
+
model = torch.load(pretrained_model_name_or_path, map_location="cpu")
|
| 825 |
+
# model = cls(config)
|
| 826 |
+
# checkpoint = torch.load(pretrained_model_name_or_path, map_location="cpu")
|
| 827 |
+
# state_dict = checkpoint["model_state_dict"]
|
| 828 |
+
|
| 829 |
+
# missing_keys, unexpected_keys = model.load_state_dict(
|
| 830 |
+
# state_dict, strict=False
|
| 831 |
+
# )
|
| 832 |
+
|
| 833 |
+
# if len(missing_keys) > 0:
|
| 834 |
+
# logger.warning(f"Missing keys: {missing_keys}")
|
| 835 |
+
# if len(unexpected_keys) > 0:
|
| 836 |
+
# logger.warning(f"Unexpected keys: {unexpected_keys}")
|
| 837 |
+
|
| 838 |
+
return model
|
| 839 |
+
else:
|
| 840 |
+
print("Loading from hub")
|
| 841 |
+
return super().from_pretrained(
|
| 842 |
+
pretrained_model_name_or_path, *model_args, **kwargs
|
| 843 |
+
)
|