|
--- |
|
library_name: coreml |
|
license: other |
|
license_name: apple-ascl |
|
license_link: https://github.com/apple/ml-mobileclip/blob/main/LICENSE_weights_data |
|
datasets: |
|
- apple/DataCompDR-1B |
|
--- |
|
|
|
# MobileCLIP: Fast Image-Text Models through Multi-Modal Reinforced Training |
|
|
|
MobileCLIP was introduced in [MobileCLIP: Fast Image-Text Models through Multi-Modal Reinforced Training |
|
](https://arxiv.org/pdf/2311.17049.pdf) (CVPR 2024), by Pavan Kumar Anasosalu Vasu, Hadi Pouransari, Fartash Faghri, Raviteja Vemulapalli, Oncel Tuzel. |
|
|
|
This repository contains the text and image encoders of all variants of MobileCLIP exported to Core ML. These Core ML models can be plugged-into the demo app provided in the official [MobileCLIP repo](https://github.com/apple/ml-mobileclip) |
|
|
|
<img src="mce_example.gif" width="240" height="540" /> |
|
|
|
### Highlights |
|
|
|
* Our smallest variant `MobileCLIP-S0` obtains similar zero-shot performance as [OpenAI](https://arxiv.org/abs/2103.00020)'s ViT-B/16 model while being 4.8x faster and 2.8x smaller. |
|
* `MobileCLIP-S2` obtains better avg zero-shot performance than [SigLIP](https://arxiv.org/abs/2303.15343)'s ViT-B/16 model while being 2.3x faster and 2.1x smaller, and trained with 3x less seen samples. |
|
* `MobileCLIP-B`(LT) attains zero-shot ImageNet performance of **77.2%** which is significantly better than recent works like [DFN](https://arxiv.org/abs/2309.17425) and [SigLIP](https://arxiv.org/abs/2303.15343) with similar architectures or even [OpenAI's ViT-L/14@336](https://arxiv.org/abs/2103.00020). |
|
|
|
## Checkpoints |
|
|
|
| Model | # Seen <BR>Samples (B) | # Params (M) <BR> (img + txt) | Latency (ms) <BR> (img + txt) | IN-1k Zero-Shot <BR> Top-1 Acc. (%) | Avg. Perf. (%) <BR> on 38 datasets | |
|
|:----------------------------------------------------------|:----------------------:|:-----------------------------:|:-----------------------------:|:-----------------------------------:|:----------------------------------:| |
|
| [MobileCLIP-S0](https://hf.co/pcuenq/MobileCLIP-S0) | 13 | 11.4 + 42.4 | 1.5 + 1.6 | 67.8 | 58.1 | |
|
| [MobileCLIP-S1](https://hf.co/pcuenq/MobileCLIP-S1) | 13 | 21.5 + 63.4 | 2.5 + 3.3 | 72.6 | 61.3 | |
|
| [MobileCLIP-S2](https://hf.co/pcuenq/MobileCLIP-S2) | 13 | 35.7 + 63.4 | 3.6 + 3.3 | 74.4 | 63.7 | |
|
| [MobileCLIP-B](https://hf.co/pcuenq/MobileCLIP-B) | 13 | 86.3 + 63.4 | 10.4 + 3.3 | 76.8 | 65.2 | |
|
| [MobileCLIP-B (LT)](https://hf.co/pcuenq/MobileCLIP-B-LT) | 36 | 86.3 + 63.4 | 10.4 + 3.3 | 77.2 | 65.8 | |
|
|
|
## Download |
|
|
|
Install `huggingface-cli` |
|
|
|
```bash |
|
brew install huggingface-cli |
|
``` |
|
|
|
```bash |
|
huggingface-cli download --local-dir models apple/coreml-mobileclip |
|
``` |
|
|
|
## Citation |
|
|
|
**[MobileCLIP: Fast Image-Text Models through Multi-Modal Reinforced Training](https://arxiv.org/pdf/2311.17049.pdf). (CVPR 2024)** |
|
*Pavan Kumar Anasosalu Vasu, Hadi Pouransari, Fartash Faghri, Raviteja Vemulapalli, Oncel Tuzel.* |
|
|
|
```bibtex |
|
@InProceedings{mobileclip2024, |
|
author = {Pavan Kumar Anasosalu Vasu, Hadi Pouransari, Fartash Faghri, Raviteja Vemulapalli, Oncel Tuzel}, |
|
title = {MobileCLIP: Fast Image-Text Models through Multi-Modal Reinforced Training}, |
|
booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)}, |
|
month = {June}, |
|
year = {2024}, |
|
} |
|
``` |
|
|