alaaelnouby
commited on
Update README.md
Browse files
README.md
CHANGED
@@ -2,4 +2,84 @@
|
|
2 |
license: other
|
3 |
license_name: apple-sample-code-license
|
4 |
license_link: LICENSE
|
|
|
|
|
5 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
license: other
|
3 |
license_name: apple-sample-code-license
|
4 |
license_link: LICENSE
|
5 |
+
library_name: ml-aim
|
6 |
+
pipeline_tag: image-classification
|
7 |
---
|
8 |
+
|
9 |
+
# AIM: Autoregressive Image Models
|
10 |
+
|
11 |
+
*Alaaeldin El-Nouby, Michal Klein, Shuangfei Zhai, Miguel Angel Bautista, Alexander Toshev, Vaishaal Shankar,
|
12 |
+
Joshua M Susskind, and Armand Joulin*
|
13 |
+
|
14 |
+
|
15 |
+
This software project accompanies the research paper, [Scalable Pre-training of Large Autoregressive Image Models](https://arxiv.org/abs/2401.08541).
|
16 |
+
|
17 |
+
We introduce **AIM** a collection of vision models pre-trained with an autoregressive generative objective.
|
18 |
+
We show that autoregressive pre-training of image features exhibits similar scaling properties to their
|
19 |
+
textual counterpart (i.e. Large Language Models). Specifically, we highlight two findings:
|
20 |
+
1. the model capacity can be trivially scaled to billions of parameters, and
|
21 |
+
2. AIM effectively leverages large collections of uncurated image data.
|
22 |
+
|
23 |
+
## Installation
|
24 |
+
Please install PyTorch using the official [installation instructions](https://pytorch.org/get-started/locally/).
|
25 |
+
Afterward, install the package as:
|
26 |
+
```commandline
|
27 |
+
pip install git+https://git@github.com/apple/ml-aim.git
|
28 |
+
```
|
29 |
+
|
30 |
+
|
31 |
+
## Usage
|
32 |
+
Below we provide an example of loading the model via [HuggingFace Hub](https://huggingface.co/docs/hub/) as:
|
33 |
+
```python
|
34 |
+
from PIL import Image
|
35 |
+
|
36 |
+
from aim.torch.models import AIMForImageClassification
|
37 |
+
from aim.torch.data import val_transforms
|
38 |
+
|
39 |
+
img = Image.open(...)
|
40 |
+
model = AIMForImageClassification.from_pretrained("apple/aim-3B")
|
41 |
+
transform = val_transforms()
|
42 |
+
|
43 |
+
inp = transform(img).unsqueeze(0)
|
44 |
+
logits, features = model(inp)
|
45 |
+
```
|
46 |
+
|
47 |
+
### ImageNet-1k results (frozen trunk)
|
48 |
+
|
49 |
+
The table below contains the classification results on ImageNet-1k validation set.
|
50 |
+
|
51 |
+
<table style="margin: auto">
|
52 |
+
<thead>
|
53 |
+
<tr>
|
54 |
+
<th rowspan="2">model</th>
|
55 |
+
<th colspan="2">top-1 IN-1k</th>
|
56 |
+
</tr>
|
57 |
+
<tr>
|
58 |
+
<th>last layer</th>
|
59 |
+
<th>best layer</th>
|
60 |
+
</tr>
|
61 |
+
</thead>
|
62 |
+
|
63 |
+
<tbody>
|
64 |
+
<tr>
|
65 |
+
<td>AIM-0.6B</td>
|
66 |
+
<td>78.5%</td>
|
67 |
+
<td>79.4%</td>
|
68 |
+
</tr>
|
69 |
+
<tr>
|
70 |
+
<td>AIM-1B</td>
|
71 |
+
<td>80.6%</td>
|
72 |
+
<td>82.3%</td>
|
73 |
+
</tr>
|
74 |
+
<tr>
|
75 |
+
<td>AIM-3B</td>
|
76 |
+
<td>82.2%</td>
|
77 |
+
<td>83.3%</td>
|
78 |
+
</tr>
|
79 |
+
<tr>
|
80 |
+
<td>AIM-7B</td>
|
81 |
+
<td>82.4%</td>
|
82 |
+
<td>84.0%</td>
|
83 |
+
</tr>
|
84 |
+
</tbody>
|
85 |
+
</table>
|