Train 3 mills
Browse files- README.md +1 -1
- config.json +1 -1
- crazy_lunar_bot.zip +2 -2
- crazy_lunar_bot/data +8 -8
- crazy_lunar_bot/policy.optimizer.pth +1 -1
- crazy_lunar_bot/policy.pth +1 -1
- replay.mp4 +0 -0
- results.json +1 -1
README.md
CHANGED
@@ -16,7 +16,7 @@ model-index:
|
|
16 |
type: LunarLander-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
-
value:
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
|
|
16 |
type: LunarLander-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
+
value: 264.76 +/- 15.95
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f10170d4820>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f10170d48b0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f10170d4940>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f10170d49d0>", "_build": "<function ActorCriticPolicy._build at 0x7f10170d4a60>", "forward": "<function ActorCriticPolicy.forward at 0x7f10170d4af0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f10170d4b80>", "_predict": "<function ActorCriticPolicy._predict at 0x7f10170d4c10>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f10170d4ca0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f10170d4d30>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f10170d4dc0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f10170cbdb0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 3031040, "_total_timesteps": 3015808.0, "_num_timesteps_at_start": 1015808, "seed": null, "action_noise": null, "start_time": 1670684819184800095, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAFoE5L3XDye7hgszvPXxjjwGhjE8BpR2vQAAAAAAAIA/DYYkvotCUT9IlJO+R1MXv6KAlr57lwm+AAAAAAAAAAAGChu+0lSvPlrl8j1nbJW+ZKqyvVQmjT0AAAAAAAAAAGZKDLwfve65H9YWvdeLVDVPpuQ7imvKtAAAgD8AAIA/M09rvJb+Qj29Tbo9MbI9vkSGGj0DOPs8AAAAAAAAAAAzL2k8+t6vP0WU7z711RK/1bc1vFcuBL0AAAAAAAAAALNnUj67sRw/urqjO9t/A7/zNGw+PozHvQAAAAAAAAAAM0Vzvfi1mT/wvcC+kvo+vzN8sL3+GIW+AAAAAAAAAAA2Dna+RyIdvU1Q0byOPTm7knSHPtFTLDwAAIA/AACAP7MNXj5PGzk/uuMRPgPCAb8shX8+I1buvQAAAAAAAAAAjYJ4Ps4Qpz/SgCM/bGkbv0itoj6q6lE+AAAAAAAAAABmgjE8IBOyP+Tusz6rDaO+/Gm+uwqADDwAAAAAAAAAAGZWTjsfveW542kDtC3pia4M/EW7PByxMwAAgD8AAIA/M+mwvMCauD/OYNS+HEFmPiUn0ztqlEa9AAAAAAAAAAB9u3a+6Ay5PhyBvT5GSIK+UzrGO1uXTz4AAAAAAAAAANpWPT7hyZC80sq3u4y+hLz1uAK+kHs0vAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.005050719409193105, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVJxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI7s9FQwZNcUCUhpRSlIwBbJRNBwGMAXSUR0C2vidKh+OPdX2UKGgGaAloD0MIqaPjaqQqcUCUhpRSlGgVS9FoFkdAtr4uHtWuHXV9lChoBmgJaA9DCGxc/66PoXFAlIaUUpRoFUvZaBZHQLa+ZFa0Qbx1fZQoaAZoCWgPQwj+7bJf93ZxQJSGlFKUaBVLwWgWR0C2vnioCMgmdX2UKGgGaAloD0MIUKinj8DYc0CUhpRSlGgVS8FoFkdAtr6485jpcHV9lChoBmgJaA9DCCdO7ncoXnJAlIaUUpRoFUvkaBZHQLa+ui704BF1fZQoaAZoCWgPQwhHHogs0jFvQJSGlFKUaBVL4WgWR0C2vtAFTvRadX2UKGgGaAloD0MILekoB7PzbkCUhpRSlGgVS/5oFkdAtr7+TY/Vy3V9lChoBmgJaA9DCG11OSWgVG9AlIaUUpRoFUvRaBZHQLa+/xPwd811fZQoaAZoCWgPQwg8+IkDqPBwQJSGlFKUaBVL8mgWR0C2vw1j/dZadX2UKGgGaAloD0MI1SE3w43YckCUhpRSlGgVS+BoFkdAtr8dQKrq+3V9lChoBmgJaA9DCEwYzcq2iHNAlIaUUpRoFUvGaBZHQLa/RHG0eEJ1fZQoaAZoCWgPQwgIWKt2zc5zQJSGlFKUaBVL12gWR0C2v0SFCb+cdX2UKGgGaAloD0MI2IFzRpRjcECUhpRSlGgVS+poFkdAtr9YyVObiXV9lChoBmgJaA9DCPEqa5viEnFAlIaUUpRoFUvkaBZHQLa/Y5TqB3B1fZQoaAZoCWgPQwgTJ/c7FO1zQJSGlFKUaBVL7mgWR0C2v3HmvGIbdX2UKGgGaAloD0MIrTWU2ktycUCUhpRSlGgVS/loFkdAtr97qqwQlXV9lChoBmgJaA9DCEWcTrLV53FAlIaUUpRoFUvUaBZHQLa/sSSvC/J1fZQoaAZoCWgPQwhZh6OrNPFxQJSGlFKUaBVNGwFoFkdAtr/F10T103V9lChoBmgJaA9DCNuHvOVqZnBAlIaUUpRoFUv6aBZHQLa/0tJnQIF1fZQoaAZoCWgPQwipbFhTWTJvQJSGlFKUaBVL0WgWR0C2v+3jhky2dX2UKGgGaAloD0MImzi532ETckCUhpRSlGgVS8xoFkdAtr/9PUKArnV9lChoBmgJaA9DCJNxjGSPGHFAlIaUUpRoFUvxaBZHQLbAGpjMFEB1fZQoaAZoCWgPQwiHiQYpuDlwQJSGlFKUaBVLy2gWR0C2wCG6wt8NdX2UKGgGaAloD0MIIhrdQWxzcUCUhpRSlGgVS+RoFkdAtsBGLuQZGnV9lChoBmgJaA9DCLjLft3pMm9AlIaUUpRoFUvQaBZHQLbASFvAGjd1fZQoaAZoCWgPQwijyjDuRjZxQJSGlFKUaBVL52gWR0C2wFhb4agmdX2UKGgGaAloD0MISDKrd7jFcECUhpRSlGgVS9FoFkdAtsBq77Kq43V9lChoBmgJaA9DCPNy2H3HCnJAlIaUUpRoFUvGaBZHQLbAbe3hGYt1fZQoaAZoCWgPQwj/7EeKiEBzQJSGlFKUaBVL22gWR0C2wJFY2bXpdX2UKGgGaAloD0MITntKzklMc0CUhpRSlGgVS/BoFkdAtsCSf4AS4HV9lChoBmgJaA9DCJGdt7GZY3NAlIaUUpRoFUvdaBZHQLbAooWpIc11fZQoaAZoCWgPQwjMYIxIFLVyQJSGlFKUaBVLzmgWR0C2xe4c3l0YdX2UKGgGaAloD0MISUkPQ6t6cUCUhpRSlGgVS/ZoFkdAtsXvP1L8JnV9lChoBmgJaA9DCHL9uz4zr3BAlIaUUpRoFUvWaBZHQLbGC5sj3VV1fZQoaAZoCWgPQwhK7NrebiVwQJSGlFKUaBVL32gWR0C2xlHBDXvqdX2UKGgGaAloD0MIxVbQtMQbcECUhpRSlGgVS8poFkdAtsZT5AQg93V9lChoBmgJaA9DCELRPIDFH3FAlIaUUpRoFUv0aBZHQLbGY6vaDf51fZQoaAZoCWgPQwiu00hLZatsQJSGlFKUaBVLy2gWR0C2xoYv38GcdX2UKGgGaAloD0MIrW2Kx4UMcUCUhpRSlGgVS+loFkdAtsaMe3hGY3V9lChoBmgJaA9DCD/lmCyu1XBAlIaUUpRoFU0wAWgWR0C2xp/k3juKdX2UKGgGaAloD0MIxR1v8ltvcECUhpRSlGgVS81oFkdAtsavOmixmnV9lChoBmgJaA9DCMi1oWJcFXBAlIaUUpRoFUvUaBZHQLbGvNpudf91fZQoaAZoCWgPQwiQ96qVCb9xQJSGlFKUaBVL7WgWR0C2xskKArhBdX2UKGgGaAloD0MIbjSAt8DQb0CUhpRSlGgVTQQBaBZHQLbG1qUeMhp1fZQoaAZoCWgPQwjVy+80GWJwQJSGlFKUaBVLwGgWR0C2xtg/X5FgdX2UKGgGaAloD0MIzM8NTVngcUCUhpRSlGgVS95oFkdAtsbsl0HQhXV9lChoBmgJaA9DCJ+tg4O9xHJAlIaUUpRoFUvDaBZHQLbHAPrOZ9d1fZQoaAZoCWgPQwineFxUyx9zQJSGlFKUaBVL8WgWR0C2xwQX668QdX2UKGgGaAloD0MIF0UPfIx4c0CUhpRSlGgVS/doFkdAtsdCQp4KQnV9lChoBmgJaA9DCC5zuixmuHFAlIaUUpRoFUvCaBZHQLbHWhSLqD91fZQoaAZoCWgPQwh/hjdrMKZxQJSGlFKUaBVL7WgWR0C2x590V8CxdX2UKGgGaAloD0MInKVkOYn+cECUhpRSlGgVS+1oFkdAtseuOvMbFXV9lChoBmgJaA9DCLTIdr6f029AlIaUUpRoFUvNaBZHQLbHuyIpH7R1fZQoaAZoCWgPQwjtKw/S00tzQJSGlFKUaBVL5mgWR0C2x8c2vStvdX2UKGgGaAloD0MIzvxqDhC3ckCUhpRSlGgVS/BoFkdAtsfcXO4XoHV9lChoBmgJaA9DCLvQXKdR83FAlIaUUpRoFUvYaBZHQLbH6lS0jTt1fZQoaAZoCWgPQwijIHh8O+FwQJSGlFKUaBVL5GgWR0C2yAw9/z8QdX2UKGgGaAloD0MIzEV8J6ZTcUCUhpRSlGgVS/loFkdAtshE/SpiqnV9lChoBmgJaA9DCJj3ONPEdHJAlIaUUpRoFU0XAWgWR0C2yEZOFg2IdX2UKGgGaAloD0MIxOi5hS7zbkCUhpRSlGgVS/5oFkdAtshLq1PWQXV9lChoBmgJaA9DCNUgzO2euHBAlIaUUpRoFUv0aBZHQLbIWI8yN4t1fZQoaAZoCWgPQwjlfoeigHdzQJSGlFKUaBVL52gWR0C2yF3/T9bYdX2UKGgGaAloD0MIIuAQqtSIckCUhpRSlGgVTQYBaBZHQLbIj53C9AZ1fZQoaAZoCWgPQwiY+Q5+4iNzQJSGlFKUaBVLv2gWR0C2yNs/t6X0dX2UKGgGaAloD0MItCJqos8PdECUhpRSlGgVS/xoFkdAtsjnWRRuTHV9lChoBmgJaA9DCO0Q/7BlNnNAlIaUUpRoFUvOaBZHQLbI/yHmA9V1fZQoaAZoCWgPQwjQ7Lq3og5xQJSGlFKUaBVL5GgWR0C2yQW0zCUHdX2UKGgGaAloD0MIVKcDWY8zc0CUhpRSlGgVS71oFkdAtskTZ+QU6HV9lChoBmgJaA9DCAWoqWVrd29AlIaUUpRoFUvXaBZHQLbJGOTJQtV1fZQoaAZoCWgPQwhpigCnd9xtQJSGlFKUaBVL2WgWR0C2yTAOz6acdX2UKGgGaAloD0MIi/uPTEcdckCUhpRSlGgVS89oFkdAtslLB42S+3V9lChoBmgJaA9DCGSSkbPw7XBAlIaUUpRoFUvEaBZHQLbJa/tIClt1fZQoaAZoCWgPQwjfiy/a46JvQJSGlFKUaBVL2WgWR0C2yZ0P1+RYdX2UKGgGaAloD0MIh/nyAmzpc0CUhpRSlGgVS99oFkdAtsmscXFcZHV9lChoBmgJaA9DCMIWu30WUHFAlIaUUpRoFUv0aBZHQLbJsyhBZ6l1fZQoaAZoCWgPQwiuu3mqg5hwQJSGlFKUaBVL+mgWR0C2ycMbWEsbdX2UKGgGaAloD0MI5PkMqLdgcUCUhpRSlGgVS8xoFkdAtsnEctGutHV9lChoBmgJaA9DCPKWqx8bfXBAlIaUUpRoFUvJaBZHQLbKLYjSofl1fZQoaAZoCWgPQwijkGRW73dxQJSGlFKUaBVL3WgWR0C2ylZylvZRdX2UKGgGaAloD0MIdJXurrMebkCUhpRSlGgVS/JoFkdAtspYLLIPsnV9lChoBmgJaA9DCM7drpdmCnFAlIaUUpRoFUvEaBZHQLbKXMnqmj11fZQoaAZoCWgPQwg8hzJURUBvQJSGlFKUaBVNAAFoFkdAtspiuU2UCHV9lChoBmgJaA9DCPT6k/ic/HBAlIaUUpRoFUvxaBZHQLbKg6ltTDR1fZQoaAZoCWgPQwhl/PuMy51wQJSGlFKUaBVL1WgWR0C2ypRiTdLydX2UKGgGaAloD0MI+IkD6PeucECUhpRSlGgVTREBaBZHQLbKunJkoWp1fZQoaAZoCWgPQwg2d/S/HLtxQJSGlFKUaBVL4mgWR0C2ysou01IidX2UKGgGaAloD0MIAOSECaMCcECUhpRSlGgVS9RoFkdAtsrnim2srHV9lChoBmgJaA9DCPIjfsXakXFAlIaUUpRoFUvKaBZHQLbK7nYxtYV1fZQoaAZoCWgPQwiuEiwOp4BwQJSGlFKUaBVL4GgWR0C2ywlzuF6BdX2UKGgGaAloD0MIIhecwd/0UUCUhpRSlGgVS5ZoFkdAtstGRT0g83V9lChoBmgJaA9DCFsnLsdr/HNAlIaUUpRoFU0NAWgWR0C2y2tCNS62dX2UKGgGaAloD0MIqYb9ntiGcUCUhpRSlGgVS8ZoFkdAtsuU5cTrV3V9lChoBmgJaA9DCB5uh4bFzHFAlIaUUpRoFU0vAWgWR0C2y6p0OmSAdX2UKGgGaAloD0MIkGtDxTg2cECUhpRSlGgVS9poFkdAtsvGJhvzfHV9lChoBmgJaA9DCAIqHEFqfHJAlIaUUpRoFUviaBZHQLbLyd0q6OJ1fZQoaAZoCWgPQwg6r7FLVLFzQJSGlFKUaBVL3WgWR0C2y/Sm/FisdX2UKGgGaAloD0MIRj8aThk3cUCUhpRSlGgVS8JoFkdAtswDzxwyZnV9lChoBmgJaA9DCG9HOC34N3FAlIaUUpRoFUvdaBZHQLbMB7V8Ti91fZQoaAZoCWgPQwiVRPZBFkpyQJSGlFKUaBVLumgWR0C2zAd4eLeidWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 740, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f10170d4820>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f10170d48b0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f10170d4940>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f10170d49d0>", "_build": "<function ActorCriticPolicy._build at 0x7f10170d4a60>", "forward": "<function ActorCriticPolicy.forward at 0x7f10170d4af0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f10170d4b80>", "_predict": "<function ActorCriticPolicy._predict at 0x7f10170d4c10>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f10170d4ca0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f10170d4d30>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f10170d4dc0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f10170cbdb0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 6045696, "_total_timesteps": 6031040.0, "_num_timesteps_at_start": 3031040, "seed": null, "action_noise": null, "start_time": 1670687466818817888, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAABPzRz6XhVk/tRetPukZGL/ovcM+0ReVPgAAAAAAAAAAmiK3PR877Lv9ok+9A4MFPEKHDj2FTg0+AACAPwAAgD8AQIM8jwYuugCy+LZsJRKy0Yh5uqWCDjYAAIA/AACAP2Yu4jx7qq26oQ40PDvFijxzNz6785NxPQAAgD8AAIA/TQFHPbXXvz82yKk+vdbZPSh3zLziWAo9AAAAAAAAAADaFI8+jm+cPx5o8T6yqhu/xd71PsmuHT4AAAAAAAAAAGa9uTyFdsi7yvVhvnlQb709HBs9/X4BvwAAAAAAAIA/zcQsvYVes7uZXSE8EQeUPG6HBz360Hq9AACAPwAAgD+aJMa8Nge1P0Dln74dV2y9l92EvCtoLr4AAAAAAAAAAM0SJzy3ZVA+ajFgvVtU2r5oRu883vNJOQAAAAAAAAAAzfwGuwrlebt2HoS8J3QAPRNQvTyYI9e9AACAPwAAgD9g7UC+OL+hPmUezD7evru+xEYCPTNBbT4AAAAAAAAAAM0q/DxScIK5C4gGPLY/GD3S3zU5RhoCPAAAgD8AAIA/s1tUPdczBrl1bna+gFaDvpjKuL1iPik/AACAPwAAAACTo0C+wMMZPwnkLT0FUhe/FTFyvl4T7T0AAAAAAAAAAJrJE7xcZzi67hf5OzzG6LgM7YU7QwDctwAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.0024300949753275347, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVORAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI2su201YicECUhpRSlIwBbJRL/IwBdJRHQMF9o4kmhM91fZQoaAZoCWgPQwhGlzeH62NwQJSGlFKUaBVNWwFoFkdAwX3QlsP8RHV9lChoBmgJaA9DCFdBDHRtYG5AlIaUUpRoFUunaBZHQMF903l0YCR1fZQoaAZoCWgPQwgLC+4HfBhzQJSGlFKUaBVNAwFoFkdAwX3giN83M3V9lChoBmgJaA9DCHjsZ7GUGnJAlIaUUpRoFU0pAmgWR0DBffKa3I+4dX2UKGgGaAloD0MIEt4ehECUc0CUhpRSlGgVS+toFkdAwX36t7rs0HV9lChoBmgJaA9DCBu8r8rF/nBAlIaUUpRoFUvGaBZHQMF9/reyiVV1fZQoaAZoCWgPQwhqMXiYdhxwQJSGlFKUaBVNJwJoFkdAwX4Qq8UVSHV9lChoBmgJaA9DCP+Tv3tHmWhAlIaUUpRoFU1iA2gWR0DBfiHuG9HudX2UKGgGaAloD0MIPiMRGsH2b0CUhpRSlGgVS85oFkdAwX4rSUC7snV9lChoBmgJaA9DCDZ1HhX/d/W/lIaUUpRoFUtVaBZHQMF+MSquKXR1fZQoaAZoCWgPQwglQE0tGz5zQJSGlFKUaBVNKgFoFkdAwX4xEAHVw3V9lChoBmgJaA9DCPDfvDhx6W9AlIaUUpRoFUv+aBZHQMF+PeoUBXF1fZQoaAZoCWgPQwiu9NpsbA1yQJSGlFKUaBVNJgFoFkdAwX49+BH09XV9lChoBmgJaA9DCGqHvybreG9AlIaUUpRoFU3cAWgWR0DBfkS7CiyqdX2UKGgGaAloD0MIYtnMISm0cECUhpRSlGgVS/JoFkdAwX5TMEidKHV9lChoBmgJaA9DCFDIztvY9XFAlIaUUpRoFUvQaBZHQMF+Wr/82rJ1fZQoaAZoCWgPQwj7BbthWwFtQJSGlFKUaBVNegFoFkdAwX5f779AHHV9lChoBmgJaA9DCFtEFJO3GW9AlIaUUpRoFUvHaBZHQMF+j8LjPv91fZQoaAZoCWgPQwjf/IaJRrRxQJSGlFKUaBVL7mgWR0DBfqVi8WbgdX2UKGgGaAloD0MIXYb/dEOkckCUhpRSlGgVTRkBaBZHQMF+rWf02+B1fZQoaAZoCWgPQwiUhETahmhyQJSGlFKUaBVL2mgWR0DBfr20Xxe+dX2UKGgGaAloD0MInuqQmyEIckCUhpRSlGgVTS8BaBZHQMF+wseOn2t1fZQoaAZoCWgPQwiFfNCz2ThxQJSGlFKUaBVL+GgWR0DBfsevIOpbdX2UKGgGaAloD0MIdH0fDlLZcUCUhpRSlGgVS9hoFkdAwX7LTz/ZNHV9lChoBmgJaA9DCJC/tKiPBnJAlIaUUpRoFUvgaBZHQMF+0LamGdt1fZQoaAZoCWgPQwhvnX+7bK5yQJSGlFKUaBVL2mgWR0DBftgbQ1JldX2UKGgGaAloD0MI7uvAOSMAc0CUhpRSlGgVS8poFkdAwX7uB19v0nV9lChoBmgJaA9DCDXPEfmuoHNAlIaUUpRoFU0DAWgWR0DBfv0WbgCPdX2UKGgGaAloD0MIm6+Sj11/ckCUhpRSlGgVS/loFkdAwYGjSE12q3V9lChoBmgJaA9DCI3sSsvI8G9AlIaUUpRoFUu0aBZHQMGBpYnfEXN1fZQoaAZoCWgPQwiHpYEf1TJzQJSGlFKUaBVNRAFoFkdAwYGyF+uvEHV9lChoBmgJaA9DCJje/ly0mHNAlIaUUpRoFUvIaBZHQMGByU+TvAp1fZQoaAZoCWgPQwgaFM0DmK9yQJSGlFKUaBVNwQFoFkdAwYHYcR15jnV9lChoBmgJaA9DCEOSWb1DaXJAlIaUUpRoFUvLaBZHQMGB4dQXQ+l1fZQoaAZoCWgPQwhYObTINn5wQJSGlFKUaBVL4mgWR0DBgeUqril0dX2UKGgGaAloD0MIJxQi4BALckCUhpRSlGgVS9loFkdAwYHwl5WzW3V9lChoBmgJaA9DCD2YFB/fZnBAlIaUUpRoFUvQaBZHQMGB8hQN0/51fZQoaAZoCWgPQwgcfGEyVZNwQJSGlFKUaBVNegFoFkdAwYH1wKjSHHV9lChoBmgJaA9DCCZSms1jLHJAlIaUUpRoFUvfaBZHQMGB+MVDa5B1fZQoaAZoCWgPQwj3OxQF+i9yQJSGlFKUaBVL0GgWR0DBgf17IDHPdX2UKGgGaAloD0MIU5EKY4uabkCUhpRSlGgVS7JoFkdAwYIKMDOkcnV9lChoBmgJaA9DCAJIbeKkBXRAlIaUUpRoFUv0aBZHQMGCDEPczqN1fZQoaAZoCWgPQwg5e2e01W1wQJSGlFKUaBVLpGgWR0DBgiJsGgSOdX2UKGgGaAloD0MIUFQ2rOnCcUCUhpRSlGgVS8loFkdAwYJUFPBSDXV9lChoBmgJaA9DCDs3bcbp33BAlIaUUpRoFUu3aBZHQMGCVUJF9a51fZQoaAZoCWgPQwgaUG9GzeVxQJSGlFKUaBVNCAFoFkdAwYJgka/ATXV9lChoBmgJaA9DCDyE8dO4/25AlIaUUpRoFUvAaBZHQMGCZTGxUvR1fZQoaAZoCWgPQwjmsWZkkJJwQJSGlFKUaBVLuWgWR0DBgnOR9w3pdX2UKGgGaAloD0MIwRn8/WKackCUhpRSlGgVS7ZoFkdAwYJ1LcsUZnV9lChoBmgJaA9DCGlxxjAnj25AlIaUUpRoFUvHaBZHQMGCec6V+ql1fZQoaAZoCWgPQwj678FrV71yQJSGlFKUaBVNOAFoFkdAwYKBKYiPhnV9lChoBmgJaA9DCIzyzMvhvnBAlIaUUpRoFUuraBZHQMGCgjX4CZF1fZQoaAZoCWgPQwgrM6X1901xQJSGlFKUaBVNCQFoFkdAwYKbUtqYZ3V9lChoBmgJaA9DCEHxY8xd0HJAlIaUUpRoFUvlaBZHQMGCrX1BdD91fZQoaAZoCWgPQwjXag97oWJxQJSGlFKUaBVL4WgWR0DBgsZVjqfOdX2UKGgGaAloD0MI8gaY+Y4vcUCUhpRSlGgVS6ZoFkdAwYLNi5uqFXV9lChoBmgJaA9DCO1FtB3TwnBAlIaUUpRoFUu/aBZHQMGC7ECvHLl1fZQoaAZoCWgPQwgcQpWavW5wQJSGlFKUaBVNcQFoFkdAwYL1i97F9HV9lChoBmgJaA9DCADkhAljUHNAlIaUUpRoFU1tAWgWR0DBgwHV9Wp7dX2UKGgGaAloD0MIIA2nzA17ckCUhpRSlGgVS/doFkdAwYML0yP+43V9lChoBmgJaA9DCC82rRRCRHFAlIaUUpRoFUvjaBZHQMGDDLfUF0R1fZQoaAZoCWgPQwgQsFbt2tdwQJSGlFKUaBVNRgNoFkdAwYMTjx0+1XV9lChoBmgJaA9DCCMsKuJ0YnJAlIaUUpRoFUvNaBZHQMGDGm2sq8V1fZQoaAZoCWgPQwgcQwBwLChyQJSGlFKUaBVL5GgWR0DBgx1zEJjUdX2UKGgGaAloD0MIs2Dij6LjcECUhpRSlGgVS+doFkdAwYMeISlFdHV9lChoBmgJaA9DCOEmo8rwdHJAlIaUUpRoFU1PAmgWR0DBgyVRFZxJdX2UKGgGaAloD0MIrwW9N8Yhc0CUhpRSlGgVS+VoFkdAwYMotuk1uXV9lChoBmgJaA9DCMiyYOLPaXFAlIaUUpRoFU0EAWgWR0DBgzPQjUutdX2UKGgGaAloD0MIR68GKA2qcUCUhpRSlGgVS6xoFkdAwYM+YdhiLHV9lChoBmgJaA9DCJ/ouvCDmHNAlIaUUpRoFUvnaBZHQMGDPw7DEWJ1fZQoaAZoCWgPQwi7KHrgo1xxQJSGlFKUaBVLwGgWR0DBg07BVMmGdX2UKGgGaAloD0MIY+5aQv4EckCUhpRSlGgVS+toFkdAwYNPub7TD3V9lChoBmgJaA9DCLU3+MKkWHFAlIaUUpRoFUusaBZHQMGDastCiRJ1fZQoaAZoCWgPQwh/aObJNUdvQJSGlFKUaBVLx2gWR0DBg3HFBIFvdX2UKGgGaAloD0MIZ0eq7/xMc0CUhpRSlGgVS6ZoFkdAwYN/UHY6GXV9lChoBmgJaA9DCBTLLa1GM3JAlIaUUpRoFUvFaBZHQMGDg8vduYR1fZQoaAZoCWgPQwhFEOfhBCNxQJSGlFKUaBVLtGgWR0DBg4WF+NLldX2UKGgGaAloD0MIzbBR1q+CcECUhpRSlGgVS7toFkdAwYOM4ku6E3V9lChoBmgJaA9DCH+g3LYvF3JAlIaUUpRoFUv/aBZHQMGDjiI1tO51fZQoaAZoCWgPQwhbsFQXMC5zQJSGlFKUaBVLt2gWR0DBg5UMoc7ydX2UKGgGaAloD0MIc6HyryVxcUCUhpRSlGgVS8poFkdAwYOcyad+X3V9lChoBmgJaA9DCC6rsBmg8HFAlIaUUpRoFUv2aBZHQMGDqBFmWdF1fZQoaAZoCWgPQwjT9q+stONyQJSGlFKUaBVNCQFoFkdAwYOuD+R5knV9lChoBmgJaA9DCHU7+8qDWHFAlIaUUpRoFUvWaBZHQMGDtCj+Jgt1fZQoaAZoCWgPQwjeOv92GdpwQJSGlFKUaBVL7GgWR0DBg82sxO+JdX2UKGgGaAloD0MID39N1ih0c0CUhpRSlGgVS95oFkdAwYPYNxVAA3V9lChoBmgJaA9DCP/omzRNv3FAlIaUUpRoFUu9aBZHQMGD4dznzQN1fZQoaAZoCWgPQwix4H7Ag1RuQJSGlFKUaBVNDAFoFkdAwYPjWKdhAnV9lChoBmgJaA9DCJYIVP8g2nJAlIaUUpRoFUupaBZHQMGD7LBKtgd1fZQoaAZoCWgPQwi/DMaIhG9xQJSGlFKUaBVLsWgWR0DBg+1NDc/MdX2UKGgGaAloD0MI5bZ9jzpmcECUhpRSlGgVS69oFkdAwYPx0cOsk3V9lChoBmgJaA9DCAq8k0/PkXFAlIaUUpRoFU0SAWgWR0DBg/a/dqL1dX2UKGgGaAloD0MI5j45CpD2cUCUhpRSlGgVS8FoFkdAwYQD1KXfInV9lChoBmgJaA9DCH3mrE+5EXNAlIaUUpRoFUvuaBZHQMGEBGtZFG51fZQoaAZoCWgPQwjxD1t6NItwQJSGlFKUaBVLx2gWR0DBhBT7qIJrdX2UKGgGaAloD0MIGQCquLGAckCUhpRSlGgVS8poFkdAwYQnxR2r4nV9lChoBmgJaA9DCCQlPQxtKXNAlIaUUpRoFUveaBZHQMGELo5xR2t1fZQoaAZoCWgPQwhxOzQsxjNxQJSGlFKUaBVNEwFoFkdAwYQ8kdFOPHV9lChoBmgJaA9DCCR9WkU/FXRAlIaUUpRoFU0nAWgWR0DBhEEUj9n9dWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 1476, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
crazy_lunar_bot.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1a7727596858446a921cc26745979558d92b0e1d607f314c9d18fb7b0700e858
|
3 |
+
size 147260
|
crazy_lunar_bot/data
CHANGED
@@ -42,12 +42,12 @@
|
|
42 |
"_np_random": null
|
43 |
},
|
44 |
"n_envs": 16,
|
45 |
-
"num_timesteps":
|
46 |
-
"_total_timesteps":
|
47 |
-
"_num_timesteps_at_start":
|
48 |
"seed": null,
|
49 |
"action_noise": null,
|
50 |
-
"start_time":
|
51 |
"learning_rate": 0.0003,
|
52 |
"tensorboard_log": null,
|
53 |
"lr_schedule": {
|
@@ -56,7 +56,7 @@
|
|
56 |
},
|
57 |
"_last_obs": {
|
58 |
":type:": "<class 'numpy.ndarray'>",
|
59 |
-
":serialized:": "
|
60 |
},
|
61 |
"_last_episode_starts": {
|
62 |
":type:": "<class 'numpy.ndarray'>",
|
@@ -66,16 +66,16 @@
|
|
66 |
"_episode_num": 0,
|
67 |
"use_sde": false,
|
68 |
"sde_sample_freq": -1,
|
69 |
-
"_current_progress_remaining": -0.
|
70 |
"ep_info_buffer": {
|
71 |
":type:": "<class 'collections.deque'>",
|
72 |
-
":serialized:": "
|
73 |
},
|
74 |
"ep_success_buffer": {
|
75 |
":type:": "<class 'collections.deque'>",
|
76 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
},
|
78 |
-
"_n_updates":
|
79 |
"n_steps": 1024,
|
80 |
"gamma": 0.999,
|
81 |
"gae_lambda": 0.98,
|
|
|
42 |
"_np_random": null
|
43 |
},
|
44 |
"n_envs": 16,
|
45 |
+
"num_timesteps": 6045696,
|
46 |
+
"_total_timesteps": 6031040.0,
|
47 |
+
"_num_timesteps_at_start": 3031040,
|
48 |
"seed": null,
|
49 |
"action_noise": null,
|
50 |
+
"start_time": 1670687466818817888,
|
51 |
"learning_rate": 0.0003,
|
52 |
"tensorboard_log": null,
|
53 |
"lr_schedule": {
|
|
|
56 |
},
|
57 |
"_last_obs": {
|
58 |
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAABPzRz6XhVk/tRetPukZGL/ovcM+0ReVPgAAAAAAAAAAmiK3PR877Lv9ok+9A4MFPEKHDj2FTg0+AACAPwAAgD8AQIM8jwYuugCy+LZsJRKy0Yh5uqWCDjYAAIA/AACAP2Yu4jx7qq26oQ40PDvFijxzNz6785NxPQAAgD8AAIA/TQFHPbXXvz82yKk+vdbZPSh3zLziWAo9AAAAAAAAAADaFI8+jm+cPx5o8T6yqhu/xd71PsmuHT4AAAAAAAAAAGa9uTyFdsi7yvVhvnlQb709HBs9/X4BvwAAAAAAAIA/zcQsvYVes7uZXSE8EQeUPG6HBz360Hq9AACAPwAAgD+aJMa8Nge1P0Dln74dV2y9l92EvCtoLr4AAAAAAAAAAM0SJzy3ZVA+ajFgvVtU2r5oRu883vNJOQAAAAAAAAAAzfwGuwrlebt2HoS8J3QAPRNQvTyYI9e9AACAPwAAgD9g7UC+OL+hPmUezD7evru+xEYCPTNBbT4AAAAAAAAAAM0q/DxScIK5C4gGPLY/GD3S3zU5RhoCPAAAgD8AAIA/s1tUPdczBrl1bna+gFaDvpjKuL1iPik/AACAPwAAAACTo0C+wMMZPwnkLT0FUhe/FTFyvl4T7T0AAAAAAAAAAJrJE7xcZzi67hf5OzzG6LgM7YU7QwDctwAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
60 |
},
|
61 |
"_last_episode_starts": {
|
62 |
":type:": "<class 'numpy.ndarray'>",
|
|
|
66 |
"_episode_num": 0,
|
67 |
"use_sde": false,
|
68 |
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.0024300949753275347,
|
70 |
"ep_info_buffer": {
|
71 |
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVORAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI2su201YicECUhpRSlIwBbJRL/IwBdJRHQMF9o4kmhM91fZQoaAZoCWgPQwhGlzeH62NwQJSGlFKUaBVNWwFoFkdAwX3QlsP8RHV9lChoBmgJaA9DCFdBDHRtYG5AlIaUUpRoFUunaBZHQMF903l0YCR1fZQoaAZoCWgPQwgLC+4HfBhzQJSGlFKUaBVNAwFoFkdAwX3giN83M3V9lChoBmgJaA9DCHjsZ7GUGnJAlIaUUpRoFU0pAmgWR0DBffKa3I+4dX2UKGgGaAloD0MIEt4ehECUc0CUhpRSlGgVS+toFkdAwX36t7rs0HV9lChoBmgJaA9DCBu8r8rF/nBAlIaUUpRoFUvGaBZHQMF9/reyiVV1fZQoaAZoCWgPQwhqMXiYdhxwQJSGlFKUaBVNJwJoFkdAwX4Qq8UVSHV9lChoBmgJaA9DCP+Tv3tHmWhAlIaUUpRoFU1iA2gWR0DBfiHuG9HudX2UKGgGaAloD0MIPiMRGsH2b0CUhpRSlGgVS85oFkdAwX4rSUC7snV9lChoBmgJaA9DCDZ1HhX/d/W/lIaUUpRoFUtVaBZHQMF+MSquKXR1fZQoaAZoCWgPQwglQE0tGz5zQJSGlFKUaBVNKgFoFkdAwX4xEAHVw3V9lChoBmgJaA9DCPDfvDhx6W9AlIaUUpRoFUv+aBZHQMF+PeoUBXF1fZQoaAZoCWgPQwiu9NpsbA1yQJSGlFKUaBVNJgFoFkdAwX49+BH09XV9lChoBmgJaA9DCGqHvybreG9AlIaUUpRoFU3cAWgWR0DBfkS7CiyqdX2UKGgGaAloD0MIYtnMISm0cECUhpRSlGgVS/JoFkdAwX5TMEidKHV9lChoBmgJaA9DCFDIztvY9XFAlIaUUpRoFUvQaBZHQMF+Wr/82rJ1fZQoaAZoCWgPQwj7BbthWwFtQJSGlFKUaBVNegFoFkdAwX5f779AHHV9lChoBmgJaA9DCFtEFJO3GW9AlIaUUpRoFUvHaBZHQMF+j8LjPv91fZQoaAZoCWgPQwjf/IaJRrRxQJSGlFKUaBVL7mgWR0DBfqVi8WbgdX2UKGgGaAloD0MIXYb/dEOkckCUhpRSlGgVTRkBaBZHQMF+rWf02+B1fZQoaAZoCWgPQwiUhETahmhyQJSGlFKUaBVL2mgWR0DBfr20Xxe+dX2UKGgGaAloD0MInuqQmyEIckCUhpRSlGgVTS8BaBZHQMF+wseOn2t1fZQoaAZoCWgPQwiFfNCz2ThxQJSGlFKUaBVL+GgWR0DBfsevIOpbdX2UKGgGaAloD0MIdH0fDlLZcUCUhpRSlGgVS9hoFkdAwX7LTz/ZNHV9lChoBmgJaA9DCJC/tKiPBnJAlIaUUpRoFUvgaBZHQMF+0LamGdt1fZQoaAZoCWgPQwhvnX+7bK5yQJSGlFKUaBVL2mgWR0DBftgbQ1JldX2UKGgGaAloD0MI7uvAOSMAc0CUhpRSlGgVS8poFkdAwX7uB19v0nV9lChoBmgJaA9DCDXPEfmuoHNAlIaUUpRoFU0DAWgWR0DBfv0WbgCPdX2UKGgGaAloD0MIm6+Sj11/ckCUhpRSlGgVS/loFkdAwYGjSE12q3V9lChoBmgJaA9DCI3sSsvI8G9AlIaUUpRoFUu0aBZHQMGBpYnfEXN1fZQoaAZoCWgPQwiHpYEf1TJzQJSGlFKUaBVNRAFoFkdAwYGyF+uvEHV9lChoBmgJaA9DCJje/ly0mHNAlIaUUpRoFUvIaBZHQMGByU+TvAp1fZQoaAZoCWgPQwgaFM0DmK9yQJSGlFKUaBVNwQFoFkdAwYHYcR15jnV9lChoBmgJaA9DCEOSWb1DaXJAlIaUUpRoFUvLaBZHQMGB4dQXQ+l1fZQoaAZoCWgPQwhYObTINn5wQJSGlFKUaBVL4mgWR0DBgeUqril0dX2UKGgGaAloD0MIJxQi4BALckCUhpRSlGgVS9loFkdAwYHwl5WzW3V9lChoBmgJaA9DCD2YFB/fZnBAlIaUUpRoFUvQaBZHQMGB8hQN0/51fZQoaAZoCWgPQwgcfGEyVZNwQJSGlFKUaBVNegFoFkdAwYH1wKjSHHV9lChoBmgJaA9DCCZSms1jLHJAlIaUUpRoFUvfaBZHQMGB+MVDa5B1fZQoaAZoCWgPQwj3OxQF+i9yQJSGlFKUaBVL0GgWR0DBgf17IDHPdX2UKGgGaAloD0MIU5EKY4uabkCUhpRSlGgVS7JoFkdAwYIKMDOkcnV9lChoBmgJaA9DCAJIbeKkBXRAlIaUUpRoFUv0aBZHQMGCDEPczqN1fZQoaAZoCWgPQwg5e2e01W1wQJSGlFKUaBVLpGgWR0DBgiJsGgSOdX2UKGgGaAloD0MIUFQ2rOnCcUCUhpRSlGgVS8loFkdAwYJUFPBSDXV9lChoBmgJaA9DCDs3bcbp33BAlIaUUpRoFUu3aBZHQMGCVUJF9a51fZQoaAZoCWgPQwgaUG9GzeVxQJSGlFKUaBVNCAFoFkdAwYJgka/ATXV9lChoBmgJaA9DCDyE8dO4/25AlIaUUpRoFUvAaBZHQMGCZTGxUvR1fZQoaAZoCWgPQwjmsWZkkJJwQJSGlFKUaBVLuWgWR0DBgnOR9w3pdX2UKGgGaAloD0MIwRn8/WKackCUhpRSlGgVS7ZoFkdAwYJ1LcsUZnV9lChoBmgJaA9DCGlxxjAnj25AlIaUUpRoFUvHaBZHQMGCec6V+ql1fZQoaAZoCWgPQwj678FrV71yQJSGlFKUaBVNOAFoFkdAwYKBKYiPhnV9lChoBmgJaA9DCIzyzMvhvnBAlIaUUpRoFUuraBZHQMGCgjX4CZF1fZQoaAZoCWgPQwgrM6X1901xQJSGlFKUaBVNCQFoFkdAwYKbUtqYZ3V9lChoBmgJaA9DCEHxY8xd0HJAlIaUUpRoFUvlaBZHQMGCrX1BdD91fZQoaAZoCWgPQwjXag97oWJxQJSGlFKUaBVL4WgWR0DBgsZVjqfOdX2UKGgGaAloD0MI8gaY+Y4vcUCUhpRSlGgVS6ZoFkdAwYLNi5uqFXV9lChoBmgJaA9DCO1FtB3TwnBAlIaUUpRoFUu/aBZHQMGC7ECvHLl1fZQoaAZoCWgPQwgcQpWavW5wQJSGlFKUaBVNcQFoFkdAwYL1i97F9HV9lChoBmgJaA9DCADkhAljUHNAlIaUUpRoFU1tAWgWR0DBgwHV9Wp7dX2UKGgGaAloD0MIIA2nzA17ckCUhpRSlGgVS/doFkdAwYML0yP+43V9lChoBmgJaA9DCC82rRRCRHFAlIaUUpRoFUvjaBZHQMGDDLfUF0R1fZQoaAZoCWgPQwgQsFbt2tdwQJSGlFKUaBVNRgNoFkdAwYMTjx0+1XV9lChoBmgJaA9DCCMsKuJ0YnJAlIaUUpRoFUvNaBZHQMGDGm2sq8V1fZQoaAZoCWgPQwgcQwBwLChyQJSGlFKUaBVL5GgWR0DBgx1zEJjUdX2UKGgGaAloD0MIs2Dij6LjcECUhpRSlGgVS+doFkdAwYMeISlFdHV9lChoBmgJaA9DCOEmo8rwdHJAlIaUUpRoFU1PAmgWR0DBgyVRFZxJdX2UKGgGaAloD0MIrwW9N8Yhc0CUhpRSlGgVS+VoFkdAwYMotuk1uXV9lChoBmgJaA9DCMiyYOLPaXFAlIaUUpRoFU0EAWgWR0DBgzPQjUutdX2UKGgGaAloD0MIR68GKA2qcUCUhpRSlGgVS6xoFkdAwYM+YdhiLHV9lChoBmgJaA9DCJ/ouvCDmHNAlIaUUpRoFUvnaBZHQMGDPw7DEWJ1fZQoaAZoCWgPQwi7KHrgo1xxQJSGlFKUaBVLwGgWR0DBg07BVMmGdX2UKGgGaAloD0MIY+5aQv4EckCUhpRSlGgVS+toFkdAwYNPub7TD3V9lChoBmgJaA9DCLU3+MKkWHFAlIaUUpRoFUusaBZHQMGDastCiRJ1fZQoaAZoCWgPQwh/aObJNUdvQJSGlFKUaBVLx2gWR0DBg3HFBIFvdX2UKGgGaAloD0MIZ0eq7/xMc0CUhpRSlGgVS6ZoFkdAwYN/UHY6GXV9lChoBmgJaA9DCBTLLa1GM3JAlIaUUpRoFUvFaBZHQMGDg8vduYR1fZQoaAZoCWgPQwhFEOfhBCNxQJSGlFKUaBVLtGgWR0DBg4WF+NLldX2UKGgGaAloD0MIzbBR1q+CcECUhpRSlGgVS7toFkdAwYOM4ku6E3V9lChoBmgJaA9DCH+g3LYvF3JAlIaUUpRoFUv/aBZHQMGDjiI1tO51fZQoaAZoCWgPQwhbsFQXMC5zQJSGlFKUaBVLt2gWR0DBg5UMoc7ydX2UKGgGaAloD0MIc6HyryVxcUCUhpRSlGgVS8poFkdAwYOcyad+X3V9lChoBmgJaA9DCC6rsBmg8HFAlIaUUpRoFUv2aBZHQMGDqBFmWdF1fZQoaAZoCWgPQwjT9q+stONyQJSGlFKUaBVNCQFoFkdAwYOuD+R5knV9lChoBmgJaA9DCHU7+8qDWHFAlIaUUpRoFUvWaBZHQMGDtCj+Jgt1fZQoaAZoCWgPQwjeOv92GdpwQJSGlFKUaBVL7GgWR0DBg82sxO+JdX2UKGgGaAloD0MID39N1ih0c0CUhpRSlGgVS95oFkdAwYPYNxVAA3V9lChoBmgJaA9DCP/omzRNv3FAlIaUUpRoFUu9aBZHQMGD4dznzQN1fZQoaAZoCWgPQwix4H7Ag1RuQJSGlFKUaBVNDAFoFkdAwYPjWKdhAnV9lChoBmgJaA9DCJYIVP8g2nJAlIaUUpRoFUupaBZHQMGD7LBKtgd1fZQoaAZoCWgPQwi/DMaIhG9xQJSGlFKUaBVLsWgWR0DBg+1NDc/MdX2UKGgGaAloD0MI5bZ9jzpmcECUhpRSlGgVS69oFkdAwYPx0cOsk3V9lChoBmgJaA9DCAq8k0/PkXFAlIaUUpRoFU0SAWgWR0DBg/a/dqL1dX2UKGgGaAloD0MI5j45CpD2cUCUhpRSlGgVS8FoFkdAwYQD1KXfInV9lChoBmgJaA9DCH3mrE+5EXNAlIaUUpRoFUvuaBZHQMGEBGtZFG51fZQoaAZoCWgPQwjxD1t6NItwQJSGlFKUaBVLx2gWR0DBhBT7qIJrdX2UKGgGaAloD0MIGQCquLGAckCUhpRSlGgVS8poFkdAwYQnxR2r4nV9lChoBmgJaA9DCCQlPQxtKXNAlIaUUpRoFUveaBZHQMGELo5xR2t1fZQoaAZoCWgPQwhxOzQsxjNxQJSGlFKUaBVNEwFoFkdAwYQ8kdFOPHV9lChoBmgJaA9DCCR9WkU/FXRAlIaUUpRoFU0nAWgWR0DBhEEUj9n9dWUu"
|
73 |
},
|
74 |
"ep_success_buffer": {
|
75 |
":type:": "<class 'collections.deque'>",
|
76 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
},
|
78 |
+
"_n_updates": 1476,
|
79 |
"n_steps": 1024,
|
80 |
"gamma": 0.999,
|
81 |
"gae_lambda": 0.98,
|
crazy_lunar_bot/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 88057
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b6fd7f41a7aa25bcdbe81af6b9e436b37f432db03cb7e5712b4dc4f20d426231
|
3 |
size 88057
|
crazy_lunar_bot/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 43201
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:996ee372a09f90a152ca78399b80fef4a749fc5199cf9dda9d0d8e276152e12a
|
3 |
size 43201
|
replay.mp4
CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
|
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward":
|
|
|
1 |
+
{"mean_reward": 264.7642743841809, "std_reward": 15.950192334562821, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-12-10T16:23:47.869614"}
|