Update README.md
Browse files
README.md
CHANGED
@@ -2,14 +2,217 @@
|
|
2 |
library_name: keras
|
3 |
---
|
4 |
|
5 |
-
|
6 |
|
7 |
-
|
8 |
|
9 |
-
|
10 |
|
11 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
|
13 |
## Training and evaluation data
|
14 |
|
15 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
library_name: keras
|
3 |
---
|
4 |
|
5 |
+
# tokun
|
6 |
|
7 |
+
> `to-kun` took tokens to t-can
|
8 |
|
9 |
+
Current tokenizers have notorious issues that are bringing all the LLMs down.
|
10 |
|
11 |
+
`tokun` is a model specialized in text embedding.
|
12 |
+
It is **lossless** while providing **high input compression**.
|
13 |
+
|
14 |
+
`tokun` produces vectors of dimension 256 equivalent to 64 UTF-32-BE bytes.
|
15 |
+
IE each embedding can be thought of as a *token of length 16 characters*.
|
16 |
+
|
17 |
+
But these vectors are more than basic IDs, they keep meaningful information on their constituting parts.
|
18 |
+
|
19 |
+
## Features
|
20 |
+
|
21 |
+
The model produces vector embeddings that can be directly ingested by another model.
|
22 |
+
|
23 |
+
Regular tokens are unrelated IDs, while `tokun` has the following properties:
|
24 |
+
|
25 |
+
- **international**: `tokun` performs evenly on the whole Unicode space
|
26 |
+
- **compression**: the sequence length is divided by 16
|
27 |
+
- **embeddings**: the output vectors have only a dimension 256
|
28 |
+
- **lossless**: embeddings store all the information up to the byte level
|
29 |
+
- **built-ins**: Unicode has built-in special tokens, no need for `<|im_start|>`
|
30 |
+
- **meaningful**: embeddings are natively related to each-other based on their parts
|
31 |
+
|
32 |
+
## Installation
|
33 |
+
|
34 |
+
In all cases, the model requires the code from the package `tokun`:
|
35 |
+
|
36 |
+
```shell
|
37 |
+
pip install tokun
|
38 |
+
```
|
39 |
+
|
40 |
+
### From Hugging Face
|
41 |
+
|
42 |
+
Login to Hugging Face:
|
43 |
+
|
44 |
+
```shell
|
45 |
+
huggingface-cli login
|
46 |
+
```
|
47 |
+
|
48 |
+
Download the repository:
|
49 |
+
|
50 |
+
```python
|
51 |
+
import huggingface_hub as hh
|
52 |
+
|
53 |
+
api = hh.HfApi()
|
54 |
+
api.snapshot_download(repo_id='apehex/tokun', local_dir='tokun/')
|
55 |
+
```
|
56 |
+
|
57 |
+
Import the tokenizer and model:
|
58 |
+
|
59 |
+
```python
|
60 |
+
tokenizer = tokun.huggingface.ByteTokenizer()
|
61 |
+
model = hh.from_pretrained_keras('tokun/variants/4x16/')
|
62 |
+
```
|
63 |
+
|
64 |
+
### With Base Tensorflow / Keras
|
65 |
+
|
66 |
+
You can directly load the weights [from the repository](../models/).
|
67 |
+
|
68 |
+
For the most performant variant of the model, `4x16`:
|
69 |
+
|
70 |
+
```python
|
71 |
+
import tensorflow as tf
|
72 |
+
import tokun.model
|
73 |
+
import urllib.request
|
74 |
+
|
75 |
+
urllib.request.urlretrieve('https://github.com/apehex/tokun/raw/main/models/4x16/1/6.3.keras', 'model.keras')
|
76 |
+
model = tf.keras.models.load_model('model.keras')
|
77 |
+
```
|
78 |
+
|
79 |
+
## Usage
|
80 |
+
|
81 |
+
Since it is small (between 1 and 2M parameters depending on the variant), the model can also be [trained on Google Colab][notebook-file-tokun-train].
|
82 |
+
|
83 |
+
We will be encoding and decoding the following sample:
|
84 |
+
|
85 |
+
```python
|
86 |
+
__s = """Une unité lexicale ou token lexical ou plus simplement token est un couple composé d'un nom et d'une valeur optionnelle (e.g. 135677)."""
|
87 |
+
```
|
88 |
+
|
89 |
+
### With Hugging Face
|
90 |
+
|
91 |
+
The sequence dimension is fixed to 512 because exporting the Keras model requires to specify the input shape.
|
92 |
+
So the sample is padded to `16 * 512` characters or `64 * 512` bytes.
|
93 |
+
|
94 |
+
```python
|
95 |
+
# encode with UTF-32
|
96 |
+
__x = tokenizer.batch_encode_plus(batch_text_or_text_pairs=[__s], padding='max_length', max_length=64 * 512, add_special_tokens=False)
|
97 |
+
__x = tf.convert_to_tensor(__x['input_ids'])
|
98 |
+
# tokenize
|
99 |
+
__e = model.layers[1](__x) # encoder
|
100 |
+
# these embeddings would be the input of a LLM
|
101 |
+
__o = llm(__e) # replace with your LLM
|
102 |
+
# detokenize
|
103 |
+
__p = model.layers[2](__o) # decoder
|
104 |
+
# interpret probabilities as byte indexes
|
105 |
+
__y = tokun.pipeline.postprocess(__p)
|
106 |
+
```
|
107 |
+
|
108 |
+
```python
|
109 |
+
print(len(__s))
|
110 |
+
# 252
|
111 |
+
print(__x.shape) # 16 * 512 characters = 64 * 512 bytes
|
112 |
+
# (1, 32768)
|
113 |
+
print(__e.shape) # 512 embeddings
|
114 |
+
# (1, 512, 256)
|
115 |
+
print(__p.shape) # back to x shape
|
116 |
+
# (1, 32768, 256)
|
117 |
+
```
|
118 |
+
|
119 |
+
> Note: the base Tensorflow implementation operates on any sequence dimension (see below)
|
120 |
+
|
121 |
+
### With Base Tensorflow / Keras
|
122 |
+
|
123 |
+
```python
|
124 |
+
__x = tokun.pipeline.preprocess(text=__s, groups=[4, 16], expand=[1], flatten=True)
|
125 |
+
__e = model._encoder(__x) # final embedding = input for another model
|
126 |
+
# these embeddings would be the input of a LLM
|
127 |
+
__o = llm(__e) # replace with your LLM
|
128 |
+
# detokenize
|
129 |
+
__p = MODEL._decoder(__o)
|
130 |
+
# interpret probabilities as byte indexes
|
131 |
+
__y = tokun.pipeline.postprocess(__p)
|
132 |
+
```
|
133 |
+
|
134 |
+
The OG version doesn't fix the sequence dimension:
|
135 |
+
|
136 |
+
```python
|
137 |
+
print(len(__s))
|
138 |
+
# 252
|
139 |
+
print(__x.shape) # 4 * 252 = 1008 padded to 1024 bytes
|
140 |
+
# (1, 1024)
|
141 |
+
print(__e.shape) # 252 / 16 = 1024 / 64 = 16
|
142 |
+
# (1, 16, 256)
|
143 |
+
print(__p.shape) # back to x shape
|
144 |
+
# (1, 1024, 256)
|
145 |
+
```
|
146 |
|
147 |
## Training and evaluation data
|
148 |
|
149 |
+
`tokun` was **trained on random sequences** of UTF-32-BE bytes, so that it covers the first 4 planes of Unicode.
|
150 |
+
|
151 |
+
Validation was also performed on the 7 languages of [MLQA][github-mlqa] to make sure the model keeps its accuracy on regular text.
|
152 |
+
|
153 |
+
## Resources
|
154 |
+
|
155 |
+
### Notebooks
|
156 |
+
|
157 |
+
Final model:
|
158 |
+
|
159 |
+
- train: [File][notebook-file-tokun-train] / [Colab][notebook-colab-tokun-train]
|
160 |
+
- demo: [File][notebook-file-tokun-demo] / [Colab][notebook-colab-tokun-demo]
|
161 |
+
|
162 |
+
Older / simpler model iterations:
|
163 |
+
|
164 |
+
- `tokun-1`: [File][notebook-file-tokun-1] / [Colab][notebook-colab-tokun-1]
|
165 |
+
- `tokun-4`: [File][notebook-file-tokun-4] / [Colab][notebook-colab-tokun-4]
|
166 |
+
- `tokun-16`: [File][notebook-file-tokun-16] / [Colab][notebook-colab-tokun-16]
|
167 |
+
|
168 |
+
### Articles
|
169 |
+
|
170 |
+
Main article:
|
171 |
+
|
172 |
+
- on [Github][article-file-tokun]
|
173 |
+
- on [Hugging Face][article-hugging-face]
|
174 |
+
|
175 |
+
Notes on each iteration:
|
176 |
+
|
177 |
+
- `tokun-1`: [Github][article-file-tokun-1]
|
178 |
+
- `tokun-4`: [Github][article-file-tokun-4]
|
179 |
+
- `tokun-16`: [Github][article-file-tokun-16]
|
180 |
+
|
181 |
+
## TODO
|
182 |
+
|
183 |
+
See [TODO](TODO.md).
|
184 |
+
|
185 |
+
## Credits
|
186 |
+
|
187 |
+
This project was inspired by a video from Andrej Karpathy, ["Let's build the GPT tokenizer"][youtube-karpathy-tokenizer].
|
188 |
+
|
189 |
+
## License
|
190 |
+
|
191 |
+
Licensed under the [aGPLv3](LICENSE.md).
|
192 |
+
|
193 |
+
[article-file-tokun]: https://github.com/apehex/tokun/blob/main/articles/tokun.md
|
194 |
+
[article-file-tokun-1]: https://github.com/apehex/tokun/blob/main/articles/tokun.1.md
|
195 |
+
[article-file-tokun-4]: https://github.com/apehex/tokun/blob/main/articles/tokun.4.md
|
196 |
+
[article-file-tokun-16]: https://github.com/apehex/tokun/blob/main/articles/tokun.16.md
|
197 |
+
[article-hugging-face]: https://huggingface.co/blog/apehex/tokenization-is-a-dead-weight
|
198 |
+
[article-notion-tokun-1]: https://apehex.notion.site/Tokun-1-e03c438a39fe49fcb2ce303eb63b2e73
|
199 |
+
[article-notion-tokun-4]: https://apehex.notion.site/Tokun-4-c8b4a3bd1270485a908287869553e9f2
|
200 |
+
[article-notion-tokun-16]: https://apehex.notion.site/Tokun-16-ecf35d5207ab401d85d3aa21d0b09538
|
201 |
+
|
202 |
+
[notebook-colab-tokun-1]: https://colab.research.google.com/github/apehex/tokun/blob/main/notebooks/tokun.1.ipynb
|
203 |
+
[notebook-colab-tokun-4]: https://colab.research.google.com/github/apehex/tokun/blob/main/notebooks/tokun.4.ipynb
|
204 |
+
[notebook-colab-tokun-16]: https://colab.research.google.com/github/apehex/tokun/blob/main/notebooks/tokun.16.ipynb
|
205 |
+
[notebook-colab-tokun-demo]: https://colab.research.google.com/github/apehex/tokun/blob/main/notebooks/tokun.demo.ipynb
|
206 |
+
[notebook-colab-tokun-train]: https://colab.research.google.com/github/apehex/tokun/blob/main/notebooks/tokun.train.ipynb
|
207 |
+
[notebook-file-tokun-1]: https://github.com/apehex/tokun/blob/main/notebooks/tokun.1.ipynb
|
208 |
+
[notebook-file-tokun-4]: https://github.com/apehex/tokun/blob/main/notebooks/tokun.4.ipynb
|
209 |
+
[notebook-file-tokun-16]: https://github.com/apehex/tokun/blob/main/notebooks/tokun.16.ipynb
|
210 |
+
[notebook-file-tokun-demo]: https://github.com/apehex/tokun/blob/main/notebooks/tokun.demo.ipynb
|
211 |
+
[notebook-file-tokun-train]: https://github.com/apehex/tokun/blob/main/notebooks/tokun.train.ipynb
|
212 |
+
[notebook-hf-tokun-demo]: ../notebooks/tokun.demo.ipynb
|
213 |
+
[notebook-hf-tokun-train]: ../notebooks/tokun.train.ipynb
|
214 |
+
[notebook-kaggle-tokun-demo]: ../notebooks/tokun.demo.ipynb
|
215 |
+
[notebook-kaggle-tokun-train]: ../notebooks/tokun.train.ipynb
|
216 |
+
|
217 |
+
[youtube-karpathy-tokenizer]: https://www.youtube.com/watch?v=zduSFxRajkE
|
218 |
+
|