|
--- |
|
language: |
|
- ur |
|
license: apache-2.0 |
|
tags: |
|
- automatic-speech-recognition |
|
- mozilla-foundation/common_voice_9_0 |
|
- generated_from_trainer |
|
datasets: |
|
- mozilla-foundation/common_voice_9_0 |
|
metrics: |
|
- wer |
|
model-index: |
|
- name: XLS-R-300M - Urdu |
|
results: |
|
- task: |
|
type: automatic-speech-recognition |
|
name: Speech Recognition |
|
dataset: |
|
type: mozilla-foundation/common_voice_9_0 |
|
name: Common Voice 9 |
|
args: ur |
|
metrics: |
|
- type: wer |
|
value: 23.750 |
|
name: Test WER |
|
- name: Test CER |
|
type: cer |
|
value: 8.310 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# |
|
|
|
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_9_0 - UR dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.4147 |
|
- Wer: 0.3172 |
|
- Cer: 0.1050 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 7.5e-05 |
|
- train_batch_size: 64 |
|
- eval_batch_size: 64 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 2 |
|
- total_train_batch_size: 128 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_ratio: 0.1 |
|
- training_steps: 5108 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |
|
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:| |
|
| 3.2894 | 7.83 | 400 | 3.1501 | 1.0 | 1.0 | |
|
| 1.8586 | 15.68 | 800 | 0.8871 | 0.6721 | 0.2402 | |
|
| 1.3431 | 23.52 | 1200 | 0.5813 | 0.5502 | 0.1939 | |
|
| 1.2052 | 31.37 | 1600 | 0.4956 | 0.4788 | 0.1665 | |
|
| 1.1097 | 39.21 | 2000 | 0.4447 | 0.4143 | 0.1397 | |
|
| 1.0528 | 47.06 | 2400 | 0.4439 | 0.3961 | 0.1333 | |
|
| 0.9939 | 54.89 | 2800 | 0.4348 | 0.4014 | 0.1379 | |
|
| 0.9441 | 62.74 | 3200 | 0.4236 | 0.3653 | 0.1223 | |
|
| 0.913 | 70.58 | 3600 | 0.4309 | 0.3475 | 0.1157 | |
|
| 0.8678 | 78.43 | 4000 | 0.4270 | 0.3337 | 0.1110 | |
|
| 0.8414 | 86.27 | 4400 | 0.4158 | 0.3220 | 0.1070 | |
|
| 0.817 | 94.12 | 4800 | 0.4185 | 0.3231 | 0.1072 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.19.0.dev0 |
|
- Pytorch 1.11.0+cu102 |
|
- Datasets 2.1.1.dev0 |
|
- Tokenizers 0.12.1 |
|
|