metadata
language:
- sl
license: apache-2.0
tags:
- automatic-speech-recognition
- mozilla-foundation/common_voice_8_0
- generated_from_trainer
- robust-speech-event
datasets:
- mozilla-foundation/common_voice_8_0
model-index:
- name: XLS-R-300M - Slovenian
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Common Voice 8
type: mozilla-foundation/common_voice_8_0
args: sl
metrics:
- name: Test WER
type: wer
value: 12.736
- name: Test CER
type: cer
value: 3.605
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Robust Speech Event - Dev Data
type: speech-recognition-community-v2/dev_data
args: sl
metrics:
- name: Test WER
type: wer
value: 45.587
- name: Test CER
type: cer
value: 20.886
XLS-R-300M - Slovenian
This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - SL dataset. It achieves the following results on the evaluation set:
- Loss: 0.2578
- Wer: 0.2273
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 7.5e-05
- train_batch_size: 32
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1000
- num_epochs: 60.0
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
3.1829 | 4.88 | 400 | 3.1228 | 1.0 |
2.8675 | 9.76 | 800 | 2.8616 | 0.9993 |
1.583 | 14.63 | 1200 | 0.6392 | 0.6239 |
1.1959 | 19.51 | 1600 | 0.3602 | 0.3651 |
1.0276 | 24.39 | 2000 | 0.3021 | 0.2981 |
0.9671 | 29.27 | 2400 | 0.2872 | 0.2739 |
0.873 | 34.15 | 2800 | 0.2593 | 0.2459 |
0.8513 | 39.02 | 3200 | 0.2617 | 0.2473 |
0.8132 | 43.9 | 3600 | 0.2548 | 0.2426 |
0.7935 | 48.78 | 4000 | 0.2637 | 0.2353 |
0.7565 | 53.66 | 4400 | 0.2629 | 0.2322 |
0.7359 | 58.54 | 4800 | 0.2579 | 0.2253 |
Framework versions
- Transformers 4.17.0.dev0
- Pytorch 1.10.2+cu102
- Datasets 1.18.2.dev0
- Tokenizers 0.11.0
Evaluation Commands
- To evaluate on
mozilla-foundation/common_voice_8_0
with splittest
python eval.py --model_id anuragshas/wav2vec2-xls-r-300m-sl-cv8-with-lm --dataset mozilla-foundation/common_voice_8_0 --config sl --split test
- To evaluate on
speech-recognition-community-v2/dev_data
python eval.py --model_id anuragshas/wav2vec2-xls-r-300m-sl-cv8-with-lm --dataset speech-recognition-community-v2/dev_data --config sl --split validation --chunk_length_s 5.0 --stride_length_s 1.0
Inference With LM
import torch
from datasets import load_dataset
from transformers import AutoModelForCTC, AutoProcessor
import torchaudio.functional as F
model_id = "anuragshas/wav2vec2-xls-r-300m-sl-cv8-with-lm"
sample_iter = iter(load_dataset("mozilla-foundation/common_voice_8_0", "sl", split="test", streaming=True, use_auth_token=True))
sample = next(sample_iter)
resampled_audio = F.resample(torch.tensor(sample["audio"]["array"]), 48_000, 16_000).numpy()
model = AutoModelForCTC.from_pretrained(model_id)
processor = AutoProcessor.from_pretrained(model_id)
input_values = processor(resampled_audio, return_tensors="pt").input_values
with torch.no_grad():
logits = model(input_values).logits
transcription = processor.batch_decode(logits.numpy()).text
# => "zmago je divje od letel s helikopterjem visoko vzrak"
Eval results on Common Voice 8 "test" (WER):
Without LM | With LM (run ./eval.py ) |
---|---|
19.938 | 12.736 |