anuragshas's picture
Update README.md
70378de
|
raw
history blame
4.46 kB
metadata
language:
  - sl
license: apache-2.0
tags:
  - automatic-speech-recognition
  - mozilla-foundation/common_voice_8_0
  - generated_from_trainer
  - robust-speech-event
datasets:
  - mozilla-foundation/common_voice_8_0
model-index:
  - name: XLS-R-300M - Slovenian
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: Common Voice 8
          type: mozilla-foundation/common_voice_8_0
          args: sl
        metrics:
          - name: Test WER
            type: wer
            value: 12.736
          - name: Test CER
            type: cer
            value: 3.605
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: Robust Speech Event - Dev Data
          type: speech-recognition-community-v2/dev_data
          args: sl
        metrics:
          - name: Test WER
            type: wer
            value: 45.587
          - name: Test CER
            type: cer
            value: 20.886

XLS-R-300M - Slovenian

This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - SL dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2578
  • Wer: 0.2273

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 7.5e-05
  • train_batch_size: 32
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 1000
  • num_epochs: 60.0
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
3.1829 4.88 400 3.1228 1.0
2.8675 9.76 800 2.8616 0.9993
1.583 14.63 1200 0.6392 0.6239
1.1959 19.51 1600 0.3602 0.3651
1.0276 24.39 2000 0.3021 0.2981
0.9671 29.27 2400 0.2872 0.2739
0.873 34.15 2800 0.2593 0.2459
0.8513 39.02 3200 0.2617 0.2473
0.8132 43.9 3600 0.2548 0.2426
0.7935 48.78 4000 0.2637 0.2353
0.7565 53.66 4400 0.2629 0.2322
0.7359 58.54 4800 0.2579 0.2253

Framework versions

  • Transformers 4.17.0.dev0
  • Pytorch 1.10.2+cu102
  • Datasets 1.18.2.dev0
  • Tokenizers 0.11.0

Evaluation Commands

  1. To evaluate on mozilla-foundation/common_voice_8_0 with split test
python eval.py --model_id anuragshas/wav2vec2-xls-r-300m-sl-cv8-with-lm --dataset mozilla-foundation/common_voice_8_0 --config sl --split test
  1. To evaluate on speech-recognition-community-v2/dev_data
python eval.py --model_id anuragshas/wav2vec2-xls-r-300m-sl-cv8-with-lm --dataset speech-recognition-community-v2/dev_data --config sl --split validation --chunk_length_s 5.0 --stride_length_s 1.0

Inference With LM

import torch
from datasets import load_dataset
from transformers import AutoModelForCTC, AutoProcessor
import torchaudio.functional as F
model_id = "anuragshas/wav2vec2-xls-r-300m-sl-cv8-with-lm"
sample_iter = iter(load_dataset("mozilla-foundation/common_voice_8_0", "sl", split="test", streaming=True, use_auth_token=True))
sample = next(sample_iter)
resampled_audio = F.resample(torch.tensor(sample["audio"]["array"]), 48_000, 16_000).numpy()
model = AutoModelForCTC.from_pretrained(model_id)
processor = AutoProcessor.from_pretrained(model_id)
input_values = processor(resampled_audio, return_tensors="pt").input_values
with torch.no_grad():
    logits = model(input_values).logits
transcription = processor.batch_decode(logits.numpy()).text
# => "zmago je divje od letel s helikopterjem visoko vzrak"

Eval results on Common Voice 8 "test" (WER):

Without LM With LM (run ./eval.py)
19.938 12.736