librarian-bot's picture
Librarian Bot: Add base_model information to model
c06b073
|
raw
history blame
3.6 kB
metadata
language:
  - pa
license: apache-2.0
tags:
  - generated_from_trainer
  - robust-speech-event
  - hf-asr-leaderboard
datasets:
  - mozilla-foundation/common_voice_7_0
metrics:
  - wer
base_model: facebook/wav2vec2-xls-r-300m
model-index:
  - name: XLS-R-300M - Punjabi
    results:
      - task:
          type: automatic-speech-recognition
          name: Speech Recognition
        dataset:
          name: Common Voice 7
          type: mozilla-foundation/common_voice_7_0
          args: pa-IN
        metrics:
          - type: wer
            value: 45.611
            name: Test WER
          - type: cer
            value: 15.584
            name: Test CER

XLS-R-300M - Punjabi

This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the common_voice dataset. It achieves the following results on the evaluation set:

  • Loss: 1.2548
  • Wer: 0.5677

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.12
  • num_epochs: 120
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
6.4804 16.65 400 1.8461 1.0
0.474 33.33 800 1.1018 0.6624
0.1389 49.98 1200 1.1918 0.6103
0.0919 66.65 1600 1.1889 0.6058
0.0657 83.33 2000 1.2266 0.5931
0.0479 99.98 2400 1.2512 0.5902
0.0355 116.65 2800 1.2548 0.5677

Framework versions

  • Transformers 4.15.0
  • Pytorch 1.10.0+cu111
  • Datasets 1.18.0
  • Tokenizers 0.10.3

Evaluation Commands

  1. To evaluate on mozilla-foundation/common_voice_7_0 with split test
python eval.py --model_id anuragshas/wav2vec2-large-xls-r-300m-pa-in --dataset mozilla-foundation/common_voice_7_0 --config pa-IN --split test

Inference With LM

import torch
from datasets import load_dataset
from transformers import AutoModelForCTC, AutoProcessor
import torchaudio.functional as F
model_id = "anuragshas/wav2vec2-large-xls-r-300m-pa-in"
sample_iter = iter(load_dataset("mozilla-foundation/common_voice_7_0", "pa-IN", split="test", streaming=True, use_auth_token=True))
sample = next(sample_iter)
resampled_audio = F.resample(torch.tensor(sample["audio"]["array"]), 48_000, 16_000).numpy()
model = AutoModelForCTC.from_pretrained(model_id)
processor = AutoProcessor.from_pretrained(model_id)
input_values = processor(resampled_audio, return_tensors="pt").input_values
with torch.no_grad():
    logits = model(input_values).logits
transcription = processor.batch_decode(logits.numpy()).text
# => "ਉਨ੍ਹਾਂ ਨੇ ਸਾਰੇ ਤੇਅਰਵੇ ਵੱਖਰੀ ਕਿਸਮ ਦੇ ਕੀਤੇ ਹਨ"

Eval results on Common Voice 7 "test" (WER):

Without LM With LM (run ./eval.py)
51.968 45.611