metadata
language:
- pa
license: apache-2.0
tags:
- generated_from_trainer
- robust-speech-event
- hf-asr-leaderboard
datasets:
- mozilla-foundation/common_voice_7_0
metrics:
- wer
base_model: facebook/wav2vec2-xls-r-300m
model-index:
- name: XLS-R-300M - Punjabi
results:
- task:
type: automatic-speech-recognition
name: Speech Recognition
dataset:
name: Common Voice 7
type: mozilla-foundation/common_voice_7_0
args: pa-IN
metrics:
- type: wer
value: 45.611
name: Test WER
- type: cer
value: 15.584
name: Test CER
XLS-R-300M - Punjabi
This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the common_voice dataset. It achieves the following results on the evaluation set:
- Loss: 1.2548
- Wer: 0.5677
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.12
- num_epochs: 120
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
6.4804 | 16.65 | 400 | 1.8461 | 1.0 |
0.474 | 33.33 | 800 | 1.1018 | 0.6624 |
0.1389 | 49.98 | 1200 | 1.1918 | 0.6103 |
0.0919 | 66.65 | 1600 | 1.1889 | 0.6058 |
0.0657 | 83.33 | 2000 | 1.2266 | 0.5931 |
0.0479 | 99.98 | 2400 | 1.2512 | 0.5902 |
0.0355 | 116.65 | 2800 | 1.2548 | 0.5677 |
Framework versions
- Transformers 4.15.0
- Pytorch 1.10.0+cu111
- Datasets 1.18.0
- Tokenizers 0.10.3
Evaluation Commands
- To evaluate on
mozilla-foundation/common_voice_7_0
with splittest
python eval.py --model_id anuragshas/wav2vec2-large-xls-r-300m-pa-in --dataset mozilla-foundation/common_voice_7_0 --config pa-IN --split test
Inference With LM
import torch
from datasets import load_dataset
from transformers import AutoModelForCTC, AutoProcessor
import torchaudio.functional as F
model_id = "anuragshas/wav2vec2-large-xls-r-300m-pa-in"
sample_iter = iter(load_dataset("mozilla-foundation/common_voice_7_0", "pa-IN", split="test", streaming=True, use_auth_token=True))
sample = next(sample_iter)
resampled_audio = F.resample(torch.tensor(sample["audio"]["array"]), 48_000, 16_000).numpy()
model = AutoModelForCTC.from_pretrained(model_id)
processor = AutoProcessor.from_pretrained(model_id)
input_values = processor(resampled_audio, return_tensors="pt").input_values
with torch.no_grad():
logits = model(input_values).logits
transcription = processor.batch_decode(logits.numpy()).text
# => "ਉਨ੍ਹਾਂ ਨੇ ਸਾਰੇ ਤੇਅਰਵੇ ਵੱਖਰੀ ਕਿਸਮ ਦੇ ਕੀਤੇ ਹਨ"
Eval results on Common Voice 7 "test" (WER):
Without LM | With LM (run ./eval.py ) |
---|---|
51.968 | 45.611 |