|
--- |
|
language: |
|
- bg |
|
license: apache-2.0 |
|
tags: |
|
- automatic-speech-recognition |
|
- generated_from_trainer |
|
- hf-asr-leaderboard |
|
- mozilla-foundation/common_voice_8_0 |
|
- robust-speech-event |
|
datasets: |
|
- mozilla-foundation/common_voice_8_0 |
|
model-index: |
|
- name: XLS-R-300M - Bulgarian |
|
results: |
|
- task: |
|
name: Automatic Speech Recognition |
|
type: automatic-speech-recognition |
|
dataset: |
|
name: Common Voice 8 |
|
type: mozilla-foundation/common_voice_8_0 |
|
args: bg |
|
metrics: |
|
- name: Test WER |
|
type: wer |
|
value: 21.195 |
|
- name: Test CER |
|
type: cer |
|
value: 4.786 |
|
- task: |
|
name: Automatic Speech Recognition |
|
type: automatic-speech-recognition |
|
dataset: |
|
name: Robust Speech Event - Dev Data |
|
type: speech-recognition-community-v2/dev_data |
|
args: bg |
|
metrics: |
|
- name: Test WER |
|
type: wer |
|
value: 32.667 |
|
- name: Test CER |
|
type: cer |
|
value: 12.452 |
|
- task: |
|
name: Automatic Speech Recognition |
|
type: automatic-speech-recognition |
|
dataset: |
|
name: Robust Speech Event - Test Data |
|
type: speech-recognition-community-v2/eval_data |
|
args: bg |
|
metrics: |
|
- name: Test WER |
|
type: wer |
|
value: 31.03 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# XLS-R-300M - Bulgarian |
|
|
|
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - BG dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.2473 |
|
- Wer: 0.3002 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 7.5e-05 |
|
- train_batch_size: 32 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 1000 |
|
- num_epochs: 50.0 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Wer | |
|
|:-------------:|:-----:|:----:|:---------------:|:------:| |
|
| 3.1589 | 3.48 | 400 | 3.0830 | 1.0 | |
|
| 2.8921 | 6.96 | 800 | 2.6605 | 0.9982 | |
|
| 1.3049 | 10.43 | 1200 | 0.5069 | 0.5707 | |
|
| 1.1349 | 13.91 | 1600 | 0.4159 | 0.5041 | |
|
| 1.0686 | 17.39 | 2000 | 0.3815 | 0.4746 | |
|
| 0.999 | 20.87 | 2400 | 0.3541 | 0.4343 | |
|
| 0.945 | 24.35 | 2800 | 0.3266 | 0.4132 | |
|
| 0.9058 | 27.83 | 3200 | 0.2969 | 0.3771 | |
|
| 0.8672 | 31.3 | 3600 | 0.2802 | 0.3553 | |
|
| 0.8313 | 34.78 | 4000 | 0.2662 | 0.3380 | |
|
| 0.8068 | 38.26 | 4400 | 0.2528 | 0.3181 | |
|
| 0.7796 | 41.74 | 4800 | 0.2537 | 0.3073 | |
|
| 0.7621 | 45.22 | 5200 | 0.2503 | 0.3036 | |
|
| 0.7611 | 48.7 | 5600 | 0.2477 | 0.2991 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.17.0.dev0 |
|
- Pytorch 1.10.2+cu102 |
|
- Datasets 1.18.2.dev0 |
|
- Tokenizers 0.11.0 |
|
|
|
|
|
#### Evaluation Commands |
|
1. To evaluate on `mozilla-foundation/common_voice_8_0` with split `test` |
|
|
|
```bash |
|
python eval.py --model_id anuragshas/wav2vec2-large-xls-r-300m-bg --dataset mozilla-foundation/common_voice_8_0 --config bg --split test |
|
``` |
|
|
|
2. To evaluate on `speech-recognition-community-v2/dev_data` |
|
|
|
```bash |
|
python eval.py --model_id anuragshas/wav2vec2-large-xls-r-300m-bg --dataset speech-recognition-community-v2/dev_data --config bg --split validation --chunk_length_s 5.0 --stride_length_s 1.0 |
|
``` |
|
|
|
### Inference With LM |
|
|
|
```python |
|
import torch |
|
from datasets import load_dataset |
|
from transformers import AutoModelForCTC, AutoProcessor |
|
import torchaudio.functional as F |
|
model_id = "anuragshas/wav2vec2-large-xls-r-300m-bg" |
|
sample_iter = iter(load_dataset("mozilla-foundation/common_voice_8_0", "bg", split="test", streaming=True, use_auth_token=True)) |
|
sample = next(sample_iter) |
|
resampled_audio = F.resample(torch.tensor(sample["audio"]["array"]), 48_000, 16_000).numpy() |
|
model = AutoModelForCTC.from_pretrained(model_id) |
|
processor = AutoProcessor.from_pretrained(model_id) |
|
input_values = processor(resampled_audio, return_tensors="pt").input_values |
|
with torch.no_grad(): |
|
logits = model(input_values).logits |
|
transcription = processor.batch_decode(logits.numpy()).text |
|
# => "и надутият му ката блоонкурем взе да се събира" |
|
``` |
|
|
|
### Eval results on Common Voice 8 "test" (WER): |
|
|
|
| Without LM | With LM (run `./eval.py`) | |
|
|---|---| |
|
| 30.07 | 21.195 | |
|
|