lewtun's picture
lewtun HF staff
Add PolyAI/minds14 tag to link with source dataset
79c454e
|
raw
history blame
3.22 kB
metadata
language:
  - all
license: apache-2.0
tags:
  - minds14
  - google/xtreme_s
  - generated_from_trainer
datasets:
  - google/xtreme_s
  - PolyAI/minds14
metrics:
  - f1
  - accuracy
model-index:
  - name: xtreme_s_xlsr_300m_minds14
    results: []

xtreme_s_xlsr_300m_minds14

This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the GOOGLE/XTREME_S - MINDS14.ALL dataset. It achieves the following results on the evaluation set:

  • Accuracy: 0.9033
  • Accuracy Cs-cz: 0.9164
  • Accuracy De-de: 0.9477
  • Accuracy En-au: 0.9235
  • Accuracy En-gb: 0.9324
  • Accuracy En-us: 0.9326
  • Accuracy Es-es: 0.9177
  • Accuracy Fr-fr: 0.9444
  • Accuracy It-it: 0.9167
  • Accuracy Ko-kr: 0.8649
  • Accuracy Nl-nl: 0.9450
  • Accuracy Pl-pl: 0.9146
  • Accuracy Pt-pt: 0.8940
  • Accuracy Ru-ru: 0.8667
  • Accuracy Zh-cn: 0.7291
  • F1: 0.9015
  • F1 Cs-cz: 0.9154
  • F1 De-de: 0.9467
  • F1 En-au: 0.9199
  • F1 En-gb: 0.9334
  • F1 En-us: 0.9308
  • F1 Es-es: 0.9158
  • F1 Fr-fr: 0.9436
  • F1 It-it: 0.9135
  • F1 Ko-kr: 0.8642
  • F1 Nl-nl: 0.9440
  • F1 Pl-pl: 0.9159
  • F1 Pt-pt: 0.8883
  • F1 Ru-ru: 0.8646
  • F1 Zh-cn: 0.7249
  • Loss: 0.4119
  • Loss Cs-cz: 0.3790
  • Loss De-de: 0.2649
  • Loss En-au: 0.3459
  • Loss En-gb: 0.2853
  • Loss En-us: 0.2203
  • Loss Es-es: 0.2731
  • Loss Fr-fr: 0.1909
  • Loss It-it: 0.3520
  • Loss Ko-kr: 0.5431
  • Loss Nl-nl: 0.2515
  • Loss Pl-pl: 0.4113
  • Loss Pt-pt: 0.4798
  • Loss Ru-ru: 0.6470
  • Loss Zh-cn: 1.1216
  • Predict Samples: 4086

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 32
  • eval_batch_size: 8
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 2
  • total_train_batch_size: 64
  • total_eval_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 1500
  • num_epochs: 50.0
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss F1 Accuracy
2.6739 5.41 200 2.5687 0.0430 0.1190
1.4953 10.81 400 1.6052 0.5550 0.5692
0.6177 16.22 600 0.7927 0.8052 0.8011
0.3609 21.62 800 0.5679 0.8609 0.8609
0.4972 27.03 1000 0.5944 0.8509 0.8523
0.1799 32.43 1200 0.6194 0.8623 0.8621
0.1308 37.84 1400 0.5956 0.8569 0.8548
0.2298 43.24 1600 0.5201 0.8732 0.8743
0.0052 48.65 1800 0.3826 0.9106 0.9103

Framework versions

  • Transformers 4.18.0.dev0
  • Pytorch 1.10.2+cu113
  • Datasets 2.0.1.dev0
  • Tokenizers 0.11.6