|
--- |
|
language: |
|
- all |
|
license: apache-2.0 |
|
tags: |
|
- fleurs-lang_id |
|
- google/xtreme_s |
|
- generated_from_trainer |
|
datasets: |
|
- google/xtreme_s |
|
metrics: |
|
- accuracy |
|
model-index: |
|
- name: xtreme_s_xlsr_300m_fleurs_langid |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# xtreme_s_xlsr_300m_fleurs_langid |
|
|
|
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the GOOGLE/XTREME_S - FLEURS.ALL dataset. |
|
It achieves the following results on the evaluation set: |
|
- Accuracy: 0.7271 |
|
- Accuracy Af Za: 0.3865 |
|
- Accuracy Am Et: 0.8818 |
|
- Accuracy Ar Eg: 0.9977 |
|
- Accuracy As In: 0.9858 |
|
- Accuracy Ast Es: 0.8362 |
|
- Accuracy Az Az: 0.8386 |
|
- Accuracy Be By: 0.4085 |
|
- Accuracy Bn In: 0.9989 |
|
- Accuracy Bs Ba: 0.2508 |
|
- Accuracy Ca Es: 0.6947 |
|
- Accuracy Ceb Ph: 0.9852 |
|
- Accuracy Cmn Hans Cn: 0.9799 |
|
- Accuracy Cs Cz: 0.5353 |
|
- Accuracy Cy Gb: 0.9716 |
|
- Accuracy Da Dk: 0.6688 |
|
- Accuracy De De: 0.7807 |
|
- Accuracy El Gr: 0.7692 |
|
- Accuracy En Us: 0.9815 |
|
- Accuracy Es 419: 0.9846 |
|
- Accuracy Et Ee: 0.5230 |
|
- Accuracy Fa Ir: 0.8462 |
|
- Accuracy Ff Sn: 0.2348 |
|
- Accuracy Fi Fi: 0.9978 |
|
- Accuracy Fil Ph: 0.9564 |
|
- Accuracy Fr Fr: 0.9852 |
|
- Accuracy Ga Ie: 0.8468 |
|
- Accuracy Gl Es: 0.5016 |
|
- Accuracy Gu In: 0.973 |
|
- Accuracy Ha Ng: 0.9163 |
|
- Accuracy He Il: 0.8043 |
|
- Accuracy Hi In: 0.9354 |
|
- Accuracy Hr Hr: 0.3654 |
|
- Accuracy Hu Hu: 0.8044 |
|
- Accuracy Hy Am: 0.9914 |
|
- Accuracy Id Id: 0.9869 |
|
- Accuracy Ig Ng: 0.9360 |
|
- Accuracy Is Is: 0.0217 |
|
- Accuracy It It: 0.8 |
|
- Accuracy Ja Jp: 0.7385 |
|
- Accuracy Jv Id: 0.5824 |
|
- Accuracy Ka Ge: 0.8611 |
|
- Accuracy Kam Ke: 0.4184 |
|
- Accuracy Kea Cv: 0.8692 |
|
- Accuracy Kk Kz: 0.8727 |
|
- Accuracy Km Kh: 0.7030 |
|
- Accuracy Kn In: 0.9630 |
|
- Accuracy Ko Kr: 0.9843 |
|
- Accuracy Ku Arab Iq: 0.9577 |
|
- Accuracy Ky Kg: 0.8936 |
|
- Accuracy Lb Lu: 0.8897 |
|
- Accuracy Lg Ug: 0.9253 |
|
- Accuracy Ln Cd: 0.9644 |
|
- Accuracy Lo La: 0.1580 |
|
- Accuracy Lt Lt: 0.4686 |
|
- Accuracy Luo Ke: 0.9922 |
|
- Accuracy Lv Lv: 0.6498 |
|
- Accuracy Mi Nz: 0.9613 |
|
- Accuracy Mk Mk: 0.7636 |
|
- Accuracy Ml In: 0.6962 |
|
- Accuracy Mn Mn: 0.8462 |
|
- Accuracy Mr In: 0.3911 |
|
- Accuracy Ms My: 0.3632 |
|
- Accuracy Mt Mt: 0.6188 |
|
- Accuracy My Mm: 0.9705 |
|
- Accuracy Nb No: 0.6891 |
|
- Accuracy Ne Np: 0.8994 |
|
- Accuracy Nl Nl: 0.9093 |
|
- Accuracy Nso Za: 0.8873 |
|
- Accuracy Ny Mw: 0.4691 |
|
- Accuracy Oci Fr: 0.1533 |
|
- Accuracy Om Et: 0.9512 |
|
- Accuracy Or In: 0.5447 |
|
- Accuracy Pa In: 0.8153 |
|
- Accuracy Pl Pl: 0.7757 |
|
- Accuracy Ps Af: 0.8105 |
|
- Accuracy Pt Br: 0.7715 |
|
- Accuracy Ro Ro: 0.4122 |
|
- Accuracy Ru Ru: 0.9794 |
|
- Accuracy Rup Bg: 0.9468 |
|
- Accuracy Sd Arab In: 0.5245 |
|
- Accuracy Sk Sk: 0.8624 |
|
- Accuracy Sl Si: 0.0300 |
|
- Accuracy Sn Zw: 0.8843 |
|
- Accuracy So So: 0.8803 |
|
- Accuracy Sr Rs: 0.0257 |
|
- Accuracy Sv Se: 0.0145 |
|
- Accuracy Sw Ke: 0.9199 |
|
- Accuracy Ta In: 0.9526 |
|
- Accuracy Te In: 0.9788 |
|
- Accuracy Tg Tj: 0.9883 |
|
- Accuracy Th Th: 0.9912 |
|
- Accuracy Tr Tr: 0.7887 |
|
- Accuracy Uk Ua: 0.0627 |
|
- Accuracy Umb Ao: 0.7863 |
|
- Accuracy Ur Pk: 0.0134 |
|
- Accuracy Uz Uz: 0.4014 |
|
- Accuracy Vi Vn: 0.7246 |
|
- Accuracy Wo Sn: 0.4555 |
|
- Accuracy Xh Za: 1.0 |
|
- Accuracy Yo Ng: 0.7353 |
|
- Accuracy Yue Hant Hk: 0.7985 |
|
- Accuracy Zu Za: 0.4696 |
|
- Loss: 1.3789 |
|
- Loss Af Za: 2.6778 |
|
- Loss Am Et: 0.4615 |
|
- Loss Ar Eg: 0.0149 |
|
- Loss As In: 0.0764 |
|
- Loss Ast Es: 0.4560 |
|
- Loss Az Az: 0.5677 |
|
- Loss Be By: 1.9231 |
|
- Loss Bn In: 0.0024 |
|
- Loss Bs Ba: 2.4954 |
|
- Loss Ca Es: 1.2632 |
|
- Loss Ceb Ph: 0.0426 |
|
- Loss Cmn Hans Cn: 0.0650 |
|
- Loss Cs Cz: 1.9334 |
|
- Loss Cy Gb: 0.1274 |
|
- Loss Da Dk: 1.4990 |
|
- Loss De De: 0.8820 |
|
- Loss El Gr: 0.9839 |
|
- Loss En Us: 0.0827 |
|
- Loss Es 419: 0.0516 |
|
- Loss Et Ee: 1.9264 |
|
- Loss Fa Ir: 0.6520 |
|
- Loss Ff Sn: 5.4283 |
|
- Loss Fi Fi: 0.0109 |
|
- Loss Fil Ph: 0.1706 |
|
- Loss Fr Fr: 0.0591 |
|
- Loss Ga Ie: 0.5174 |
|
- Loss Gl Es: 1.2657 |
|
- Loss Gu In: 0.0850 |
|
- Loss Ha Ng: 0.3234 |
|
- Loss He Il: 0.8299 |
|
- Loss Hi In: 0.4190 |
|
- Loss Hr Hr: 2.9754 |
|
- Loss Hu Hu: 0.8345 |
|
- Loss Hy Am: 0.0329 |
|
- Loss Id Id: 0.0529 |
|
- Loss Ig Ng: 0.2523 |
|
- Loss Is Is: 6.5153 |
|
- Loss It It: 0.8113 |
|
- Loss Ja Jp: 1.3968 |
|
- Loss Jv Id: 2.0009 |
|
- Loss Ka Ge: 0.6162 |
|
- Loss Kam Ke: 2.2192 |
|
- Loss Kea Cv: 0.5567 |
|
- Loss Kk Kz: 0.5592 |
|
- Loss Km Kh: 1.7358 |
|
- Loss Kn In: 0.1063 |
|
- Loss Ko Kr: 0.1519 |
|
- Loss Ku Arab Iq: 0.2075 |
|
- Loss Ky Kg: 0.4639 |
|
- Loss Lb Lu: 0.4454 |
|
- Loss Lg Ug: 0.3764 |
|
- Loss Ln Cd: 0.1844 |
|
- Loss Lo La: 3.8051 |
|
- Loss Lt Lt: 2.5054 |
|
- Loss Luo Ke: 0.0479 |
|
- Loss Lv Lv: 1.3713 |
|
- Loss Mi Nz: 0.1390 |
|
- Loss Mk Mk: 0.7952 |
|
- Loss Ml In: 1.2999 |
|
- Loss Mn Mn: 0.7621 |
|
- Loss Mr In: 3.7056 |
|
- Loss Ms My: 3.0192 |
|
- Loss Mt Mt: 1.5520 |
|
- Loss My Mm: 0.1514 |
|
- Loss Nb No: 1.1194 |
|
- Loss Ne Np: 0.4231 |
|
- Loss Nl Nl: 0.3291 |
|
- Loss Nso Za: 0.5106 |
|
- Loss Ny Mw: 2.7346 |
|
- Loss Oci Fr: 5.0983 |
|
- Loss Om Et: 0.2297 |
|
- Loss Or In: 2.5432 |
|
- Loss Pa In: 0.7753 |
|
- Loss Pl Pl: 0.7309 |
|
- Loss Ps Af: 1.0454 |
|
- Loss Pt Br: 0.9782 |
|
- Loss Ro Ro: 3.5829 |
|
- Loss Ru Ru: 0.0598 |
|
- Loss Rup Bg: 0.1695 |
|
- Loss Sd Arab In: 2.6198 |
|
- Loss Sk Sk: 0.5583 |
|
- Loss Sl Si: 6.0923 |
|
- Loss Sn Zw: 0.4465 |
|
- Loss So So: 0.4492 |
|
- Loss Sr Rs: 4.7575 |
|
- Loss Sv Se: 6.5858 |
|
- Loss Sw Ke: 0.4235 |
|
- Loss Ta In: 0.1818 |
|
- Loss Te In: 0.0808 |
|
- Loss Tg Tj: 0.0912 |
|
- Loss Th Th: 0.0462 |
|
- Loss Tr Tr: 0.7340 |
|
- Loss Uk Ua: 4.6777 |
|
- Loss Umb Ao: 1.4021 |
|
- Loss Ur Pk: 8.4067 |
|
- Loss Uz Uz: 4.3297 |
|
- Loss Vi Vn: 1.1304 |
|
- Loss Wo Sn: 2.2281 |
|
- Loss Xh Za: 0.0009 |
|
- Loss Yo Ng: 1.3345 |
|
- Loss Yue Hant Hk: 1.0728 |
|
- Loss Zu Za: 3.7279 |
|
- Predict Samples: 77960 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0003 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 1 |
|
- seed: 42 |
|
- distributed_type: multi-GPU |
|
- num_devices: 8 |
|
- total_train_batch_size: 64 |
|
- total_eval_batch_size: 8 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 2000 |
|
- num_epochs: 5.0 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Accuracy | Validation Loss | |
|
|:-------------:|:-----:|:-----:|:--------:|:---------------:| |
|
| 0.5296 | 0.26 | 1000 | 0.4016 | 2.6633 | |
|
| 0.4252 | 0.52 | 2000 | 0.5751 | 1.8582 | |
|
| 0.2989 | 0.78 | 3000 | 0.6332 | 1.6780 | |
|
| 0.3563 | 1.04 | 4000 | 0.6799 | 1.4479 | |
|
| 0.1617 | 1.3 | 5000 | 0.6679 | 1.5066 | |
|
| 0.1409 | 1.56 | 6000 | 0.6992 | 1.4082 | |
|
| 0.01 | 1.82 | 7000 | 0.7071 | 1.2448 | |
|
| 0.0018 | 2.08 | 8000 | 0.7148 | 1.1996 | |
|
| 0.0014 | 2.34 | 9000 | 0.6410 | 1.6505 | |
|
| 0.0188 | 2.6 | 10000 | 0.6840 | 1.4050 | |
|
| 0.0007 | 2.86 | 11000 | 0.6621 | 1.5831 | |
|
| 0.1038 | 3.12 | 12000 | 0.6829 | 1.5441 | |
|
| 0.0003 | 3.38 | 13000 | 0.6900 | 1.3483 | |
|
| 0.0004 | 3.64 | 14000 | 0.6414 | 1.7070 | |
|
| 0.0003 | 3.9 | 15000 | 0.7075 | 1.3198 | |
|
| 0.0002 | 4.16 | 16000 | 0.7105 | 1.3118 | |
|
| 0.0001 | 4.42 | 17000 | 0.7029 | 1.4099 | |
|
| 0.0 | 4.68 | 18000 | 0.7180 | 1.3658 | |
|
| 0.0001 | 4.93 | 19000 | 0.7236 | 1.3514 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.18.0.dev0 |
|
- Pytorch 1.10.1+cu111 |
|
- Datasets 1.18.4.dev0 |
|
- Tokenizers 0.11.6 |
|
|