update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,75 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- audio-classification
|
5 |
+
- generated_from_trainer
|
6 |
+
datasets:
|
7 |
+
- common_language
|
8 |
+
metrics:
|
9 |
+
- accuracy
|
10 |
+
model-index:
|
11 |
+
- name: distilhubert-ft-common-language
|
12 |
+
results: []
|
13 |
+
---
|
14 |
+
|
15 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
16 |
+
should probably proofread and complete it, then remove this comment. -->
|
17 |
+
|
18 |
+
# distilhubert-ft-common-language
|
19 |
+
|
20 |
+
This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the common_language dataset.
|
21 |
+
It achieves the following results on the evaluation set:
|
22 |
+
- Loss: 2.7214
|
23 |
+
- Accuracy: 0.2797
|
24 |
+
|
25 |
+
## Model description
|
26 |
+
|
27 |
+
More information needed
|
28 |
+
|
29 |
+
## Intended uses & limitations
|
30 |
+
|
31 |
+
More information needed
|
32 |
+
|
33 |
+
## Training and evaluation data
|
34 |
+
|
35 |
+
More information needed
|
36 |
+
|
37 |
+
## Training procedure
|
38 |
+
|
39 |
+
### Training hyperparameters
|
40 |
+
|
41 |
+
The following hyperparameters were used during training:
|
42 |
+
- learning_rate: 3e-05
|
43 |
+
- train_batch_size: 32
|
44 |
+
- eval_batch_size: 4
|
45 |
+
- seed: 0
|
46 |
+
- gradient_accumulation_steps: 4
|
47 |
+
- total_train_batch_size: 128
|
48 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
49 |
+
- lr_scheduler_type: linear
|
50 |
+
- lr_scheduler_warmup_ratio: 0.1
|
51 |
+
- num_epochs: 10.0
|
52 |
+
- mixed_precision_training: Native AMP
|
53 |
+
|
54 |
+
### Training results
|
55 |
+
|
56 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
57 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
58 |
+
| 3.6543 | 1.0 | 173 | 3.7611 | 0.0491 |
|
59 |
+
| 3.2221 | 2.0 | 346 | 3.4868 | 0.1352 |
|
60 |
+
| 2.9332 | 3.0 | 519 | 3.2732 | 0.1861 |
|
61 |
+
| 2.7299 | 4.0 | 692 | 3.0944 | 0.2172 |
|
62 |
+
| 2.5638 | 5.0 | 865 | 2.9790 | 0.2400 |
|
63 |
+
| 2.3871 | 6.0 | 1038 | 2.8668 | 0.2590 |
|
64 |
+
| 2.3384 | 7.0 | 1211 | 2.7972 | 0.2653 |
|
65 |
+
| 2.2648 | 8.0 | 1384 | 2.7625 | 0.2695 |
|
66 |
+
| 2.2162 | 9.0 | 1557 | 2.7405 | 0.2782 |
|
67 |
+
| 2.1915 | 10.0 | 1730 | 2.7214 | 0.2797 |
|
68 |
+
|
69 |
+
|
70 |
+
### Framework versions
|
71 |
+
|
72 |
+
- Transformers 4.12.0.dev0
|
73 |
+
- Pytorch 1.9.1+cu111
|
74 |
+
- Datasets 1.14.0
|
75 |
+
- Tokenizers 0.10.3
|