|
|
|
"""FortunePulseYPT |
|
|
|
Automatically generated by Colab. |
|
|
|
Original file is located at |
|
https://colab.research.google.com/drive/1EJOL_aJRKx2BtYg_0EEl60U3VNHFy7aF |
|
""" |
|
|
|
import numpy as np |
|
import torch |
|
import matplotlib.pyplot as plt |
|
|
|
|
|
def generate_sine_wave(frequency, duration=5, amplitude=0.5, sample_rate=44100): |
|
t = np.linspace(0, duration, int(sample_rate * duration), endpoint=False) |
|
wave = amplitude * np.sin(2 * np.pi * frequency * t) |
|
return t, wave |
|
|
|
|
|
def xor_encrypt_decrypt(data, key): |
|
return bytearray(a ^ key for a in data) |
|
|
|
|
|
predicted_frequency = 40.0 |
|
|
|
|
|
t, wave_data = generate_sine_wave(predicted_frequency) |
|
|
|
|
|
wave_data_bytes = bytearray(np.float32(wave_data).tobytes()) |
|
encryption_key = 55 |
|
encrypted_wave = xor_encrypt_decrypt(wave_data_bytes, encryption_key) |
|
|
|
|
|
decrypted_wave_bytes = xor_encrypt_decrypt(encrypted_wave, encryption_key) |
|
decrypted_wave_data = np.frombuffer(decrypted_wave_bytes, dtype=np.float32) |
|
|
|
|
|
plt.subplot(2, 1, 1) |
|
plt.plot(t[:1000], wave_data[:1000], label='Original Wave') |
|
plt.title('Original Wealth Frequency') |
|
|
|
plt.subplot(2, 1, 2) |
|
plt.plot(t[:1000], decrypted_wave_data[:1000], label='Decrypted Wave', color='orange') |
|
plt.title('Decrypted Wealth Frequency') |
|
plt.show() |
|
|
|
import numpy as np |
|
import matplotlib.pyplot as plt |
|
|
|
|
|
def generate_sine_wave(frequency, duration=5, amplitude=0.5, sample_rate=44100): |
|
t = np.linspace(0, duration, int(sample_rate * duration), endpoint=False) |
|
wave = amplitude * np.sin(2 * np.pi * frequency * t) |
|
return t, wave |
|
|
|
|
|
def xor_encrypt_decrypt(data, key): |
|
return bytearray(a ^ key for a in data) |
|
|
|
|
|
def transfer_energy(frequency_wave, destination): |
|
|
|
energy = np.square(frequency_wave) |
|
|
|
|
|
print(f"Sending energy to {destination}...") |
|
|
|
|
|
return energy |
|
|
|
|
|
def visualize_energy_transfer(energy, destination, time): |
|
plt.figure(figsize=(10, 6)) |
|
|
|
|
|
plt.plot(time[:1000], energy[:1000], label=f'Energy Directed to {destination}', color='green') |
|
plt.title(f'Energy Transfer to {destination}') |
|
plt.xlabel('Time [s]') |
|
plt.ylabel('Energy') |
|
plt.grid(True) |
|
plt.show() |
|
|
|
|
|
predicted_frequency = 40.0 |
|
t, wave_data = generate_sine_wave(predicted_frequency) |
|
|
|
|
|
wave_data_bytes = bytearray(np.float32(wave_data).tobytes()) |
|
encryption_key = 55 |
|
encrypted_wave = xor_encrypt_decrypt(wave_data_bytes, encryption_key) |
|
|
|
|
|
decrypted_wave_bytes = xor_encrypt_decrypt(encrypted_wave, encryption_key) |
|
decrypted_wave_data = np.frombuffer(decrypted_wave_bytes, dtype=np.float32) |
|
|
|
|
|
destination = "Wealth Goal" |
|
energy_transferred = transfer_energy(decrypted_wave_data, destination) |
|
|
|
|
|
visualize_energy_transfer(energy_transferred, destination, t) |