antitheft159
commited on
Upload fortunepulseypt.py
Browse files- fortunepulseypt.py +103 -0
fortunepulseypt.py
ADDED
@@ -0,0 +1,103 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
"""FortunePulseYPT
|
3 |
+
|
4 |
+
Automatically generated by Colab.
|
5 |
+
|
6 |
+
Original file is located at
|
7 |
+
https://colab.research.google.com/drive/1EJOL_aJRKx2BtYg_0EEl60U3VNHFy7aF
|
8 |
+
"""
|
9 |
+
|
10 |
+
import numpy as np
|
11 |
+
import torch
|
12 |
+
import matplotlib.pyplot as plt
|
13 |
+
|
14 |
+
# Generate Wealth Frequency
|
15 |
+
def generate_sine_wave(frequency, duration=5, amplitude=0.5, sample_rate=44100):
|
16 |
+
t = np.linspace(0, duration, int(sample_rate * duration), endpoint=False)
|
17 |
+
wave = amplitude * np.sin(2 * np.pi * frequency * t)
|
18 |
+
return t, wave
|
19 |
+
|
20 |
+
# Encrypt Wave Data using XOR
|
21 |
+
def xor_encrypt_decrypt(data, key):
|
22 |
+
return bytearray(a ^ key for a in data)
|
23 |
+
|
24 |
+
# Predict a frequency (this is where your model can go)
|
25 |
+
predicted_frequency = 40.0 # Example
|
26 |
+
|
27 |
+
# Generate the wave
|
28 |
+
t, wave_data = generate_sine_wave(predicted_frequency)
|
29 |
+
|
30 |
+
# Convert to bytes and encrypt
|
31 |
+
wave_data_bytes = bytearray(np.float32(wave_data).tobytes())
|
32 |
+
encryption_key = 55 # Example key
|
33 |
+
encrypted_wave = xor_encrypt_decrypt(wave_data_bytes, encryption_key)
|
34 |
+
|
35 |
+
# Decrypt the wave data
|
36 |
+
decrypted_wave_bytes = xor_encrypt_decrypt(encrypted_wave, encryption_key)
|
37 |
+
decrypted_wave_data = np.frombuffer(decrypted_wave_bytes, dtype=np.float32)
|
38 |
+
|
39 |
+
# Visualization of Original and Decrypted Wave
|
40 |
+
plt.subplot(2, 1, 1)
|
41 |
+
plt.plot(t[:1000], wave_data[:1000], label='Original Wave')
|
42 |
+
plt.title('Original Wealth Frequency')
|
43 |
+
|
44 |
+
plt.subplot(2, 1, 2)
|
45 |
+
plt.plot(t[:1000], decrypted_wave_data[:1000], label='Decrypted Wave', color='orange')
|
46 |
+
plt.title('Decrypted Wealth Frequency')
|
47 |
+
plt.show()
|
48 |
+
|
49 |
+
import numpy as np
|
50 |
+
import matplotlib.pyplot as plt
|
51 |
+
|
52 |
+
# Generate a Sine Wave (Frequency)
|
53 |
+
def generate_sine_wave(frequency, duration=5, amplitude=0.5, sample_rate=44100):
|
54 |
+
t = np.linspace(0, duration, int(sample_rate * duration), endpoint=False)
|
55 |
+
wave = amplitude * np.sin(2 * np.pi * frequency * t)
|
56 |
+
return t, wave
|
57 |
+
|
58 |
+
# XOR Encryption Function
|
59 |
+
def xor_encrypt_decrypt(data, key):
|
60 |
+
return bytearray(a ^ key for a in data)
|
61 |
+
|
62 |
+
# Energy Transfer Layer
|
63 |
+
def transfer_energy(frequency_wave, destination):
|
64 |
+
# Calculate "energy" from the frequency (simulated as the square of the wave)
|
65 |
+
energy = np.square(frequency_wave)
|
66 |
+
|
67 |
+
# Simulate sending energy to a destination (e.g., print to console)
|
68 |
+
print(f"Sending energy to {destination}...")
|
69 |
+
|
70 |
+
# Return the computed energy for visualization
|
71 |
+
return energy
|
72 |
+
|
73 |
+
# Visualize the Energy Transfer
|
74 |
+
def visualize_energy_transfer(energy, destination, time):
|
75 |
+
plt.figure(figsize=(10, 6))
|
76 |
+
|
77 |
+
# Plot the energy wave being sent to the destination
|
78 |
+
plt.plot(time[:1000], energy[:1000], label=f'Energy Directed to {destination}', color='green')
|
79 |
+
plt.title(f'Energy Transfer to {destination}')
|
80 |
+
plt.xlabel('Time [s]')
|
81 |
+
plt.ylabel('Energy')
|
82 |
+
plt.grid(True)
|
83 |
+
plt.show()
|
84 |
+
|
85 |
+
# Predict and Generate a Frequency
|
86 |
+
predicted_frequency = 40.0 # Example predicted frequency
|
87 |
+
t, wave_data = generate_sine_wave(predicted_frequency)
|
88 |
+
|
89 |
+
# Encrypt the Frequency
|
90 |
+
wave_data_bytes = bytearray(np.float32(wave_data).tobytes())
|
91 |
+
encryption_key = 55 # Example key
|
92 |
+
encrypted_wave = xor_encrypt_decrypt(wave_data_bytes, encryption_key)
|
93 |
+
|
94 |
+
# Decrypt the Frequency
|
95 |
+
decrypted_wave_bytes = xor_encrypt_decrypt(encrypted_wave, encryption_key)
|
96 |
+
decrypted_wave_data = np.frombuffer(decrypted_wave_bytes, dtype=np.float32)
|
97 |
+
|
98 |
+
# Energy Transfer Step
|
99 |
+
destination = "Wealth Goal" # Example destination where the energy is directed
|
100 |
+
energy_transferred = transfer_energy(decrypted_wave_data, destination)
|
101 |
+
|
102 |
+
# Visualize the Energy Transfer
|
103 |
+
visualize_energy_transfer(energy_transferred, destination, t)
|