|
--- |
|
license: apache-2.0 |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- accuracy |
|
- f1 |
|
- precision |
|
- recall |
|
model-index: |
|
- name: distilbert-base-multilingual-cased-misogyny-sexism-decay0.01-fr-outofdomain |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# distilbert-base-multilingual-cased-misogyny-sexism-decay0.01-fr-outofdomain |
|
|
|
This model is a fine-tuned version of [distilbert-base-multilingual-cased](https://huggingface.co/distilbert-base-multilingual-cased) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 3.1385 |
|
- Accuracy: 0.2369 |
|
- F1: 0.1919 |
|
- Precision: 0.1087 |
|
- Recall: 0.8148 |
|
- Mae: 0.7631 |
|
- Tn: 1279 |
|
- Fp: 6491 |
|
- Fn: 180 |
|
- Tp: 792 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 10 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | Mae | Tn | Fp | Fn | Tp | |
|
|:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:|:---------:|:------:|:------:|:----:|:----:|:---:|:---:| |
|
| 0.2166 | 1.0 | 2233 | 1.2875 | 0.3377 | 0.2025 | 0.1169 | 0.7562 | 0.6623 | 2217 | 5553 | 237 | 735 | |
|
| 0.2068 | 2.0 | 4466 | 1.8399 | 0.3141 | 0.2154 | 0.1234 | 0.8467 | 0.6859 | 1923 | 5847 | 149 | 823 | |
|
| 0.2015 | 3.0 | 6699 | 1.5430 | 0.3543 | 0.2053 | 0.1189 | 0.75 | 0.6457 | 2368 | 5402 | 243 | 729 | |
|
| 0.1739 | 4.0 | 8932 | 1.8406 | 0.2815 | 0.1911 | 0.1092 | 0.7634 | 0.7185 | 1719 | 6051 | 230 | 742 | |
|
| 0.163 | 5.0 | 11165 | 2.0274 | 0.2170 | 0.1957 | 0.1105 | 0.8570 | 0.7830 | 1064 | 6706 | 139 | 833 | |
|
| 0.1481 | 6.0 | 13398 | 1.6407 | 0.2467 | 0.1931 | 0.1096 | 0.8107 | 0.7533 | 1369 | 6401 | 184 | 788 | |
|
| 0.1334 | 7.0 | 15631 | 3.0800 | 0.1875 | 0.1953 | 0.1097 | 0.8868 | 0.8125 | 777 | 6993 | 110 | 862 | |
|
| 0.12 | 8.0 | 17864 | 2.5311 | 0.2183 | 0.1962 | 0.1108 | 0.8580 | 0.7817 | 1074 | 6696 | 138 | 834 | |
|
| 0.1104 | 9.0 | 20097 | 2.9522 | 0.2135 | 0.1935 | 0.1092 | 0.8488 | 0.7865 | 1041 | 6729 | 147 | 825 | |
|
| 0.0938 | 10.0 | 22330 | 3.1385 | 0.2369 | 0.1919 | 0.1087 | 0.8148 | 0.7631 | 1279 | 6491 | 180 | 792 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.20.1 |
|
- Pytorch 1.12.0+cu102 |
|
- Datasets 2.3.2 |
|
- Tokenizers 0.12.1 |
|
|