anjulRajendraSharma
upload model
ab5465e
metadata
tags:
  - automatic-speech-recognition
  - librispeech_asr
  - generated_from_trainer
model-index:
  - name: wavlm-libri-clean-100h-base
    results: []

wavlm-libri-clean-100h-base

This model is a fine-tuned version of microsoft/wavlm-base on the LIBRISPEECH_ASR - CLEAN dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0955
  • Wer: 0.0773

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 1.0
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
2.8664 0.17 300 2.8439 1.0
0.5009 0.34 600 0.2709 0.2162
0.2056 0.5 900 0.1934 0.1602
0.1648 0.67 1200 0.1576 0.1306
0.1922 0.84 1500 0.1358 0.1114
0.093 1.01 1800 0.1277 0.1035
0.0652 1.18 2100 0.1251 0.1005
0.0848 1.35 2400 0.1188 0.0964
0.0706 1.51 2700 0.1091 0.0905
0.0846 1.68 3000 0.1018 0.0840
0.0684 1.85 3300 0.0978 0.0809

Framework versions

  • Transformers 4.15.0
  • Pytorch 1.9.1
  • Datasets 1.18.0
  • Tokenizers 0.10.3