metadata
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- glue
metrics:
- accuracy
- f1
base_model: distilbert-base-uncased
model-index:
- name: distilbert-base-uncased-finetuned-mrpc
results:
- task:
type: text-classification
name: Text Classification
dataset:
name: glue
type: glue
args: mrpc
metrics:
- type: accuracy
value: 0.8455882352941176
name: Accuracy
- type: f1
value: 0.8958677685950412
name: F1
distilbert-base-uncased-finetuned-mrpc
This model is a fine-tuned version of distilbert-base-uncased on the glue dataset. It achieves the following results on the evaluation set:
- Loss: 0.3830
- Accuracy: 0.8456
- F1: 0.8959
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
---|---|---|---|---|---|
No log | 1.0 | 230 | 0.3826 | 0.8186 | 0.8683 |
No log | 2.0 | 460 | 0.3830 | 0.8456 | 0.8959 |
0.4408 | 3.0 | 690 | 0.3835 | 0.8382 | 0.8866 |
0.4408 | 4.0 | 920 | 0.5036 | 0.8431 | 0.8919 |
0.1941 | 5.0 | 1150 | 0.5783 | 0.8431 | 0.8930 |
Framework versions
- Transformers 4.15.0
- Pytorch 1.10.0+cu111
- Datasets 1.17.0
- Tokenizers 0.10.3