whisper_tiny_vi / README.md
anhphuong's picture
End of training
f52523e verified
metadata
language:
  - vi
base_model: openai/whisper-tiny-vi-v1
tags:
  - generated_from_trainer
datasets:
  - mozilla-foundation/common_voice_11_0
metrics:
  - wer
model-index:
  - name: Whisper Tiny Vi - Anh Phuong
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: vi 500
          type: mozilla-foundation/common_voice_11_0
          args: 'config: hi, split: test'
        metrics:
          - name: Wer
            type: wer
            value: 17.927542787107694

Whisper Tiny Vi - Anh Phuong

This model is a fine-tuned version of openai/whisper-tiny-vi-v1 on the vi 500 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3071
  • Wer: 17.9275

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 4000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.4594 0.16 1000 0.4406 24.6174
0.3731 0.32 2000 0.3586 20.4809
0.3199 0.48 3000 0.3223 18.8015
0.3026 0.64 4000 0.3071 17.9275

Framework versions

  • Transformers 4.42.4
  • Pytorch 2.3.1+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1