led-base-big-patent / README.md
andreiujica's picture
End of training
200f5fb verified
|
raw
history blame
2.17 kB
metadata
license: apache-2.0
base_model: allenai/led-base-16384
tags:
  - generated_from_trainer
datasets:
  - big_patent
metrics:
  - rouge
model-index:
  - name: led-base-big-patent
    results:
      - task:
          name: Sequence-to-sequence Language Modeling
          type: text2text-generation
        dataset:
          name: big_patent
          type: big_patent
          config: g
          split: validation
          args: g
        metrics:
          - name: Rouge1
            type: rouge
            value: 0.2658

led-base-big-patent

This model is a fine-tuned version of allenai/led-base-16384 on the big_patent dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2665
  • Rouge1: 0.2658
  • Rouge2: 0.1008
  • Rougel: 0.2231
  • Rougelsum: 0.2244
  • Gen Len: 19.6593

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 4.892476e-05
  • train_batch_size: 2
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 4
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 3
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum Gen Len
No log 1.0 108 0.2940 0.2525 0.0809 0.2062 0.2074 19.956
No log 2.0 216 0.2595 0.2713 0.097 0.2233 0.2256 19.5165
No log 3.0 324 0.2665 0.2658 0.1008 0.2231 0.2244 19.6593

Framework versions

  • Transformers 4.38.2
  • Pytorch 2.2.1+cu121
  • Datasets 2.18.0
  • Tokenizers 0.15.2