andrecastro
commited on
Commit
•
d4c9490
1
Parent(s):
e9f9cda
Model save
Browse files
README.md
ADDED
@@ -0,0 +1,92 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
base_model: microsoft/cvt-13
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
datasets:
|
7 |
+
- imagefolder
|
8 |
+
metrics:
|
9 |
+
- accuracy
|
10 |
+
model-index:
|
11 |
+
- name: cvt-13
|
12 |
+
results:
|
13 |
+
- task:
|
14 |
+
name: Image Classification
|
15 |
+
type: image-classification
|
16 |
+
dataset:
|
17 |
+
name: imagefolder
|
18 |
+
type: imagefolder
|
19 |
+
config: default
|
20 |
+
split: train
|
21 |
+
args: default
|
22 |
+
metrics:
|
23 |
+
- name: Accuracy
|
24 |
+
type: accuracy
|
25 |
+
value: 0.9886363636363636
|
26 |
+
---
|
27 |
+
|
28 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
29 |
+
should probably proofread and complete it, then remove this comment. -->
|
30 |
+
|
31 |
+
# cvt-13
|
32 |
+
|
33 |
+
This model is a fine-tuned version of [microsoft/cvt-13](https://huggingface.co/microsoft/cvt-13) on the imagefolder dataset.
|
34 |
+
It achieves the following results on the evaluation set:
|
35 |
+
- Loss: 0.0361
|
36 |
+
- Accuracy: 0.9886
|
37 |
+
|
38 |
+
## Model description
|
39 |
+
|
40 |
+
More information needed
|
41 |
+
|
42 |
+
## Intended uses & limitations
|
43 |
+
|
44 |
+
More information needed
|
45 |
+
|
46 |
+
## Training and evaluation data
|
47 |
+
|
48 |
+
More information needed
|
49 |
+
|
50 |
+
## Training procedure
|
51 |
+
|
52 |
+
### Training hyperparameters
|
53 |
+
|
54 |
+
The following hyperparameters were used during training:
|
55 |
+
- learning_rate: 5e-05
|
56 |
+
- train_batch_size: 8
|
57 |
+
- eval_batch_size: 8
|
58 |
+
- seed: 42
|
59 |
+
- gradient_accumulation_steps: 4
|
60 |
+
- total_train_batch_size: 32
|
61 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
62 |
+
- lr_scheduler_type: linear
|
63 |
+
- lr_scheduler_warmup_ratio: 0.1
|
64 |
+
- num_epochs: 15
|
65 |
+
|
66 |
+
### Training results
|
67 |
+
|
68 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
69 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
70 |
+
| 0.4048 | 1.0 | 327 | 0.2161 | 0.9156 |
|
71 |
+
| 0.33 | 2.0 | 654 | 0.1320 | 0.9501 |
|
72 |
+
| 0.3147 | 3.0 | 981 | 0.1060 | 0.9612 |
|
73 |
+
| 0.2213 | 4.0 | 1309 | 0.0820 | 0.9742 |
|
74 |
+
| 0.3256 | 5.0 | 1636 | 0.0717 | 0.9750 |
|
75 |
+
| 0.3207 | 6.0 | 1963 | 0.1062 | 0.9626 |
|
76 |
+
| 0.2273 | 7.0 | 2290 | 0.0535 | 0.9797 |
|
77 |
+
| 0.2066 | 8.0 | 2618 | 0.0566 | 0.9817 |
|
78 |
+
| 0.2162 | 9.0 | 2945 | 0.0459 | 0.9828 |
|
79 |
+
| 0.2296 | 10.0 | 3272 | 0.0444 | 0.9851 |
|
80 |
+
| 0.187 | 11.0 | 3599 | 0.0348 | 0.9882 |
|
81 |
+
| 0.2208 | 12.0 | 3927 | 0.0505 | 0.9848 |
|
82 |
+
| 0.1855 | 13.0 | 4254 | 0.0371 | 0.9869 |
|
83 |
+
| 0.1875 | 14.0 | 4581 | 0.0384 | 0.9880 |
|
84 |
+
| 0.202 | 14.99 | 4905 | 0.0361 | 0.9886 |
|
85 |
+
|
86 |
+
|
87 |
+
### Framework versions
|
88 |
+
|
89 |
+
- Transformers 4.35.2
|
90 |
+
- Pytorch 2.1.0+cu121
|
91 |
+
- Datasets 2.15.0
|
92 |
+
- Tokenizers 0.15.0
|