flan-t5-base-samsum / README.md
andreaparker's picture
update model card README.md
ba2d60d
|
raw
history blame
2.23 kB
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- samsum
metrics:
- rouge
model-index:
- name: flan-t5-base-samsum
results:
- task:
name: Sequence-to-sequence Language Modeling
type: text2text-generation
dataset:
name: samsum
type: samsum
config: samsum
split: test
args: samsum
metrics:
- name: Rouge1
type: rouge
value: 47.4145
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# flan-t5-base-samsum
This model is a fine-tuned version of [google/flan-t5-base](https://huggingface.co/google/flan-t5-base) on the samsum dataset.
It achieves the following results on the evaluation set:
- Loss: 1.3772
- Rouge1: 47.4145
- Rouge2: 23.9579
- Rougel: 40.0508
- Rougelsum: 43.7144
- Gen Len: 17.3162
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:|
| 1.4264 | 1.0 | 1842 | 1.3829 | 46.4916 | 23.1227 | 39.444 | 42.9025 | 17.0977 |
| 1.3527 | 2.0 | 3684 | 1.3732 | 47.0694 | 23.4769 | 39.5942 | 43.2226 | 17.4554 |
| 1.2554 | 3.0 | 5526 | 1.3709 | 46.8801 | 23.3161 | 39.5423 | 43.1581 | 17.2027 |
| 1.2503 | 4.0 | 7368 | 1.3736 | 47.4138 | 23.7437 | 40.0016 | 43.6108 | 17.2198 |
| 1.1675 | 5.0 | 9210 | 1.3772 | 47.4145 | 23.9579 | 40.0508 | 43.7144 | 17.3162 |
### Framework versions
- Transformers 4.27.3
- Pytorch 1.13.1+cu116
- Datasets 2.10.1
- Tokenizers 0.13.2