|
--- |
|
license: apache-2.0 |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- samsum |
|
metrics: |
|
- rouge |
|
model-index: |
|
- name: flan-t5-base-samsum |
|
results: |
|
- task: |
|
name: Sequence-to-sequence Language Modeling |
|
type: text2text-generation |
|
dataset: |
|
name: samsum |
|
type: samsum |
|
config: samsum |
|
split: test |
|
args: samsum |
|
metrics: |
|
- name: Rouge1 |
|
type: rouge |
|
value: 47.4145 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# flan-t5-base-samsum |
|
|
|
This model is a fine-tuned version of [google/flan-t5-base](https://huggingface.co/google/flan-t5-base) on the samsum dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.3772 |
|
- Rouge1: 47.4145 |
|
- Rouge2: 23.9579 |
|
- Rougel: 40.0508 |
|
- Rougelsum: 43.7144 |
|
- Gen Len: 17.3162 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 5 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |
|
|:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| |
|
| 1.4264 | 1.0 | 1842 | 1.3829 | 46.4916 | 23.1227 | 39.444 | 42.9025 | 17.0977 | |
|
| 1.3527 | 2.0 | 3684 | 1.3732 | 47.0694 | 23.4769 | 39.5942 | 43.2226 | 17.4554 | |
|
| 1.2554 | 3.0 | 5526 | 1.3709 | 46.8801 | 23.3161 | 39.5423 | 43.1581 | 17.2027 | |
|
| 1.2503 | 4.0 | 7368 | 1.3736 | 47.4138 | 23.7437 | 40.0016 | 43.6108 | 17.2198 | |
|
| 1.1675 | 5.0 | 9210 | 1.3772 | 47.4145 | 23.9579 | 40.0508 | 43.7144 | 17.3162 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.27.3 |
|
- Pytorch 1.13.1+cu116 |
|
- Datasets 2.10.1 |
|
- Tokenizers 0.13.2 |
|
|