schedulebot-nlu-engine / how_to_use.md
andreaceto's picture
Update how_to_use.md
29fe96a verified

Training/Fine-tuning

Data Preparation

1. Load the datasets

Load train.jsonl, validation.jsonl, and test.jsonl splits.

raw_datasets = load_dataset("andreaceto/hasd")

2. Create Label Mappings

Now, we create the mappings from string labels (e.g., "schedule", "practitioner_name") to integer IDs. This is essential for training. We also need to create tags for the BIO (Beginning, Inside, Outside) entity scheme.

# --- Create Intent Label Mappings ---
# Get all unique intent labels from the training data
intent_labels = raw_datasets['train'].unique('intent')
intent_labels.sort() # Sort for consistency
id2intent = {i: label for i, label in enumerate(intent_labels)}
intent2id = {label: i for i, label in enumerate(intent_labels)}
print(f"Intent mapping (intent2id): {intent2id}\n")


# --- Create Entity (NER) Label Mappings in BIO format ---
# Get all unique entity labels
entity_labels = ["appointment_id", "appointment_type", "practitioner_name"]
# Create the full list of BIO tags
ner_tags = ["O"] # 'O' for tokens outside any entity
for label in entity_labels:
    ner_tags.append(f"B-{label}") # 'B' for Beginning of an entity
    ner_tags.append(f"I-{label}") # 'I' for Inside of an entity

id2ner = {i: label for i, label in enumerate(ner_tags)}
ner2id = {label: i for i, label in enumerate(ner_tags)}
print(f"NER mapping (ner2id): {ner2id}")

3. Preprocessing function

This is the core function. It takes a single data example and does two things:

  1. Tokenizes the text.
  2. Aligns character-based entity spans (start, end) with the new wordpiece tokens, assigning the correct BIO tag ID to each token.
def preprocess_function(examples):
    # --- Intent Processing ---
    intent_ids = [intent2id[intent] for intent in examples['intent']]

    # --- Tokenization ---
    tokenized_inputs = tokenizer(examples['text'], truncation=True, is_split_into_words=False, return_offsets_mapping=True)

    # --- Entity (NER) Label Alignment ---
    ner_labels = []
    for i, entities in enumerate(examples['entities']):
        word_ids = tokenized_inputs.word_ids(batch_index=i)
        label_ids = [ner2id["O"]] * len(word_ids)
        
        # For each entity, find the corresponding tokens and assign B- and I- tags
        for entity in entities:
            start_char, end_char, label = entity['start'], entity['end'], entity['label']
            
            # This flag tracks if we've found the first token of the current entity
            first_token_of_entity_found = False
            
            for j, word_id in enumerate(word_ids):
                if word_id is None:
                    continue
                
                token_char_span = tokenized_inputs['offset_mapping'][i][j]
                token_start, token_end = token_char_span
                
                # Check if the token is part of the entity
                if start_char < token_end and end_char > token_start:
                    # This is the key change. We use the flag to decide the tag.
                    if not first_token_of_entity_found:
                        # This is the first token of the entity, assign the 'B-' tag
                        label_ids[j] = ner2id[f"B-{label}"]
                        first_token_of_entity_found = True
                    else:
                        # This is a subsequent token of the same entity, assign 'I-'
                        label_ids[j] = ner2id[f"I-{label}"]

        ner_labels.append(label_ids)

    # Add the final processed labels to our tokenized inputs
    tokenized_inputs["intent_label"] = intent_ids
    tokenized_inputs["labels"] = ner_labels
    
    # Remove offset_mapping as it's not needed by the model
    tokenized_inputs.pop("offset_mapping", None)
    
    return tokenized_inputs

4. Apply Preprocessing and Save

Now we apply this function to our entire dataset and save the final, processed version.

# Apply the function to all splits of the dataset
processed_datasets = raw_datasets.map(preprocess_function, batched=True, remove_columns=raw_datasets['train'].column_names)

# Define the features for our processed dataset, including the new ClassLabels
features = Features({
    'input_ids': Sequence(Value('int64')),
    'attention_mask': Sequence(Value('int8')),
    'intent_label': ClassLabel(names=list(intent2id.keys())),
    'labels': Sequence(ClassLabel(names=list(ner2id.keys())))
})

# Cast the processed datasets to the defined features to include the label names
processed_datasets = processed_datasets.cast(features)

Multitask Model

1. Multitask Model class

To use the model you will need to define a multitask_model.py with the custom model class built upon our base model.

from transformers import AutoModel, PreTrainedModel
import torch.nn as nn

class MultitaskModel(PreTrainedModel):
    """
    A custom Transformer model with two heads: one for intent classification
    and one for named entity recognition (token classification).
    """
    config_class = AutoConfig

    def __init__(self, config):
        super().__init__(config)

        # Load the base transformer model (e.g., DistilBERT)
        self.transformer = AutoModel.from_config(config)

        # --- Heads ---
        # 1. Intent Classification Head (MLP)
        self.intent_classifier = nn.Sequential(
            nn.Linear(config.dim, config.dim // 2),
            nn.GELU(), # GELU is a smooth activation function, common in Transformers
            nn.Dropout(0.3),
            nn.Linear(config.dim // 2, self.config.num_intent_labels)
        )

        # 2. NER (Token Classification) Head (MLP)
        self.ner_classifier = nn.Sequential(
            nn.Linear(config.dim, config.dim // 2),
            nn.GELU(),
            nn.Dropout(0.3),
            nn.Linear(config.dim // 2, self.config.num_ner_labels)
        )

        # Dropout layer for regularization
        self.dropout = nn.Dropout(config.seq_classif_dropout)

    def forward(
        self,
        input_ids=None,
        attention_mask=None,
        intent_label=None, # For calculating intent loss
        labels=None,    # For calculating NER loss
    ):
        # Get the last hidden states from the base transformer model
        outputs = self.transformer(input_ids=input_ids, attention_mask=attention_mask)
        sequence_output = outputs.last_hidden_state # Shape: (batch_size, sequence_length, hidden_size)

        # --- Intent Logits ---
        # Use the [CLS] token's output for intent classification
        cls_token_output = sequence_output[:, 0, :]
        cls_token_output = self.dropout(cls_token_output)
        intent_logits = self.intent_classifier(cls_token_output)

        # --- NER Logits ---
        # Use all token outputs for NER
        sequence_output = self.dropout(sequence_output)
        ner_logits = self.ner_classifier(sequence_output)

        # --- Calculate Combined Loss ---
        total_loss = 0
        if intent_label is not None and labels is not None:
            loss_fct = nn.CrossEntropyLoss()
            # Intent loss
            intent_loss = loss_fct(intent_logits.view(-1, self.config.num_intent_labels), intent_label.view(-1))
            # NER loss (ignore padding tokens with label -100)
            ner_loss = loss_fct(ner_logits.view(-1, self.config.num_ner_labels), labels.view(-1))
            # Combine the losses (you can also weight them if one task is more important)
            total_loss = intent_loss + ner_loss

        return {
            "loss": total_loss,
            "intent_logits": intent_logits,
            "ner_logits": ner_logits,
        }

2. Load Tokenizer

model_name = "distilbert-base-uncased"
tokenizer = AutoTokenizer.from_pretrained(model_name)

3. Custom Metrics Function

This function is essential for a multitask model. It will be called by the Trainer at the end of each epoch to calculate both intent accuracy and NER F1-score.

def compute_metrics(eval_pred):
    # Unpack predictions and labels
    predictions, label_values = eval_pred
    intent_preds, ner_preds = predictions
    intent_labels, ner_labels = label_values

    # --- Intent Metrics ---
    intent_preds = np.argmax(intent_preds, axis=1)
    intent_accuracy = accuracy_score(intent_labels, intent_preds)
    intent_f1 = f1_score(intent_labels, intent_preds, average='weighted')

    # --- NER Metrics ---
    ner_preds = np.argmax(ner_preds, axis=2)

    # Remove padding tokens (where label is -100) and convert IDs to labels
    true_ner_labels = []
    true_ner_predictions = []
    id2ner = processed_datasets['train'].features['labels'].feature.names

    for i in range(len(ner_labels)):
        true_labels_row = []
        true_predictions_row = []
        for j in range(len(ner_labels[i])):
            if ner_labels[i][j] != -100:
                true_labels_row.append(id2ner[ner_labels[i][j]])
                true_predictions_row.append(id2ner[ner_preds[i][j]])
        true_ner_labels.append(true_labels_row)
        true_ner_predictions.append(true_predictions_row)

    ner_f1 = ner_f1_score(true_ner_labels, true_ner_predictions, mode='strict', scheme=IOB2)

    return {
        "intent_accuracy": intent_accuracy,
        "intent_f1": intent_f1,
        "ner_f1": ner_f1
    }

4. Instantiate the model

We now create an instance of our MultitaskModel, passing it a configuration object that includes the number of labels for each head.

# --- Get DistilBert config file ---
config = AutoConfig.from_pretrained(model_name)


# --- Create Label Mappings Directly from Data ---
# 1. Intent Labels
# Get a sorted list of unique intent strings from the training set
intent_label_list = processed_datasets['train'].features['intent_label'].names
# Create the mappings
id2intent = {i: label for i, label in enumerate(intent_label_list)}
intent2id = {label: i for i, label in enumerate(intent_label_list)}

# 2. NER Labels
# Get a sorted list of unique entities strings from the training set
ner_label_list = processed_datasets['train'].features['labels'].feature.names
# Create the mappings
id2ner = {i: label for i, label in enumerate(ner_label_list)}
ner2id = {label: i for i, label in enumerate(ner_label_list)}

# --- Add custom parameters to config object ---
config.num_intent_labels = len(id2intent)
config.num_ner_labels = len(id2ner)
config.id2label_intent = id2intent
config.label2id_intent = intent2id
config.id2label_ner = id2ner
config.label2id_ner = ner2id

# --- Finally instantiate the model ---
model = MultitaskModel(config)

Inference

Load the Model

Load the trained tokenizer and model:

tokenizer = AutoTokenizer.from_pretrained("andreaceto/schedulebot-nlu-engine")
multitask_model = MultitaskModel.from_pretrained("andreaceto/schedulebot-nlu-engine")

Preprocess raw text

In order to being able to run inference on the model, it's necessary to use the tokenizer on the raw text in input:

inputs = self.tokenizer(text, return_tensors="pt")

Get predictions

Now you can run inference using:

with torch.no_grad():
  outputs = self.multitask_model(**inputs)

Since the model returns a dictionary, you can access logits by using:

intent_logits = outputs["intent_logits"]
ner_logits = outputs["ner_logits"]

You can now extract prediction using torch.argmax() and converting the result into categorical by using the dictionaries in the config file (id2label_intent and id2label_ner).

N.B.: Since SON format specifications require that all keys in an object be strings. When the transformers library saves your configuration, it correctly converts your integer keys (0, 1, 2, etc.) into strings ("0", "1", "2"), which causes a mismatch when trying to use extracted prediction with torch.argmax() as a key in the config dictionaries. The solution is to cast the int value of prediction as a string with str().