EC2 Default User
add model
168ef09
|
raw
history blame
1.9 kB
metadata
language:
  - en
license: apache-2.0
tags:
  - generated_from_trainer
datasets:
  - boolq
metrics:
  - accuracy
model_index:
  - name: distilbert-base-uncased-boolq
    results:
      - task:
          name: Question Answering
          type: question-answering
        dataset:
          name: boolq
          type: boolq
          args: default
        metric:
          name: Accuracy
          type: accuracy
          value: 0.7314984709480122

distilbert-base-uncased-boolq

This model is a fine-tuned version of distilbert-base-uncased on the boolq dataset. It achieves the following results on the evaluation set:

  • Loss: 1.2071
  • Accuracy: 0.7315

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 1000
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.6506 1.0 531 0.6075 0.6681
0.575 2.0 1062 0.5816 0.6978
0.4397 3.0 1593 0.6137 0.7253
0.2524 4.0 2124 0.8124 0.7466
0.126 5.0 2655 1.1437 0.7370

Framework versions

  • Transformers 4.8.2
  • Pytorch 1.8.1+cu111
  • Datasets 1.8.0
  • Tokenizers 0.10.3