librarian-bot's picture
Librarian Bot: Add base_model information to model
2503d70
|
raw
history blame
2.18 kB
metadata
language:
  - en
license: apache-2.0
tags:
  - generated_from_trainer
datasets:
  - mit_restaurant
metrics:
  - precision
  - recall
  - f1
  - accuracy
model_index:
  - name: distilbert-base-uncased-ner-mit-restaurant
    results:
      - task:
          name: Token Classification
          type: token-classification
        dataset:
          name: mit_restaurant
          type: mit_restaurant
        metric:
          name: Accuracy
          type: accuracy
          value: 0.9118988661540467
base_model: distilbert-base-uncased

distilbert-base-uncased-ner-mit-restaurant

This model is a fine-tuned version of distilbert-base-uncased on the mit_restaurant dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3097
  • Precision: 0.7874
  • Recall: 0.8104
  • F1: 0.7988
  • Accuracy: 0.9119

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 4

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 1.0 431 0.4575 0.6220 0.6856 0.6523 0.8650
1.1705 2.0 862 0.3183 0.7747 0.7953 0.7848 0.9071
0.3254 3.0 1293 0.3163 0.7668 0.8021 0.7841 0.9058
0.2287 4.0 1724 0.3097 0.7874 0.8104 0.7988 0.9119

Framework versions

  • Transformers 4.8.2
  • Pytorch 1.8.1+cu111
  • Datasets 1.8.0
  • Tokenizers 0.10.3