librarian-bot's picture
Librarian Bot: Add base_model information to model
5fb3374
|
raw
history blame
1.71 kB
---
language:
- en
license: cc-by-4.0
tags:
- generated_from_trainer
datasets:
- squad_v2
- conll2003
model_index:
- name: bert-large-uncased-whole-word-masking-squad2-with-ner-conll2003-with-neg-with-repeat
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: squad_v2
type: squad_v2
args: conll2003
- task:
name: Token Classification
type: token-classification
dataset:
name: conll2003
type: conll2003
base_model: deepset/bert-large-uncased-whole-word-masking-squad2
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bert-large-uncased-whole-word-masking-squad2-with-ner-conll2003-with-neg-with-repeat
This model is a fine-tuned version of [deepset/bert-large-uncased-whole-word-masking-squad2](https://huggingface.co/deepset/bert-large-uncased-whole-word-masking-squad2) on the squad_v2 and the conll2003 datasets.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 4
- eval_batch_size: 1
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
### Framework versions
- Transformers 4.8.2
- Pytorch 1.8.1+cu111
- Datasets 1.8.0
- Tokenizers 0.10.3