anastasispk's picture
anastasispk/law-game-rt-detr
d30706b verified
metadata
license: apache-2.0
base_model: PekingU/rtdetr_r50vd_coco_o365
tags:
  - generated_from_trainer
model-index:
  - name: law-game-evidence-replacement-finetune
    results: []

law-game-evidence-replacement-finetune

This model is a fine-tuned version of PekingU/rtdetr_r50vd_coco_o365 on an unknown dataset. It achieves the following results on the evaluation set:

  • eval_loss: 3.4253
  • eval_map: 0.8264
  • eval_map_50: 0.8488
  • eval_map_75: 0.8441
  • eval_map_small: 0.5688
  • eval_map_medium: 0.9527
  • eval_map_large: 0.8547
  • eval_mar_1: 0.7043
  • eval_mar_10: 0.9575
  • eval_mar_100: 0.9727
  • eval_mar_small: 0.5949
  • eval_mar_medium: 0.9738
  • eval_mar_large: 0.9894
  • eval_map_evidence: -1.0
  • eval_mar_100_evidence: -1.0
  • eval_map_ambulance: 0.9802
  • eval_mar_100_ambulance: 0.9899
  • eval_map_artificial_target: 0.9267
  • eval_mar_100_artificial_target: 0.9572
  • eval_map_cartridge: 0.9742
  • eval_mar_100_cartridge: 0.9949
  • eval_map_gun: 0.9165
  • eval_mar_100_gun: 0.9403
  • eval_map_knife: 0.8599
  • eval_mar_100_knife: 0.931
  • eval_map_police: 0.9935
  • eval_mar_100_police: 0.9959
  • eval_map_traffic: 0.9586
  • eval_mar_100_traffic: 0.9726
  • eval_map_traffic_cone: 0.0013
  • eval_mar_100_traffic_cone: 1.0
  • eval_runtime: 50.5267
  • eval_samples_per_second: 16.467
  • eval_steps_per_second: 2.058
  • epoch: 28.0
  • step: 5152

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 300
  • num_epochs: 50

Framework versions

  • Transformers 4.44.0.dev0
  • Pytorch 2.3.1+cu121
  • Tokenizers 0.19.1