update model card README.md
Browse files
README.md
CHANGED
@@ -1,7 +1,6 @@
|
|
1 |
---
|
2 |
license: apache-2.0
|
3 |
tags:
|
4 |
-
- image-classification
|
5 |
- generated_from_trainer
|
6 |
datasets:
|
7 |
- imagefolder
|
@@ -15,7 +14,7 @@ model-index:
|
|
15 |
name: Image Classification
|
16 |
type: image-classification
|
17 |
dataset:
|
18 |
-
name:
|
19 |
type: imagefolder
|
20 |
config: default
|
21 |
split: train
|
@@ -26,7 +25,7 @@ model-index:
|
|
26 |
value: 0.9265375854214123
|
27 |
- name: Precision
|
28 |
type: precision
|
29 |
-
value: 0.
|
30 |
---
|
31 |
|
32 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
@@ -34,12 +33,12 @@ should probably proofread and complete it, then remove this comment. -->
|
|
34 |
|
35 |
# swin-base-patch4-window7-224-in22k-finetuned-brain-tumor-final
|
36 |
|
37 |
-
This model is a fine-tuned version of [microsoft/swin-base-patch4-window7-224-in22k](https://huggingface.co/microsoft/swin-base-patch4-window7-224-in22k) on the
|
38 |
It achieves the following results on the evaluation set:
|
39 |
-
- Loss: 0.
|
40 |
- Accuracy: 0.9265
|
41 |
- F1 Score: 0.9252
|
42 |
-
- Precision: 0.
|
43 |
|
44 |
## Model description
|
45 |
|
@@ -59,30 +58,40 @@ More information needed
|
|
59 |
|
60 |
The following hyperparameters were used during training:
|
61 |
- learning_rate: 1e-05
|
62 |
-
- train_batch_size:
|
63 |
-
- eval_batch_size:
|
64 |
- seed: 42
|
65 |
- gradient_accumulation_steps: 4
|
66 |
-
- total_train_batch_size:
|
67 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
68 |
- lr_scheduler_type: linear
|
69 |
- lr_scheduler_warmup_ratio: 0.1
|
70 |
-
- num_epochs:
|
71 |
|
72 |
### Training results
|
73 |
|
74 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 Score | Precision |
|
75 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:--------:|:---------:|
|
76 |
-
| 1.
|
77 |
-
| 0.
|
78 |
-
| 0.
|
79 |
-
| 0.
|
80 |
-
| 0.
|
81 |
-
| 0.
|
82 |
-
| 0.
|
83 |
-
| 0.
|
84 |
-
| 0.
|
85 |
-
| 0.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
86 |
|
87 |
|
88 |
### Framework versions
|
|
|
1 |
---
|
2 |
license: apache-2.0
|
3 |
tags:
|
|
|
4 |
- generated_from_trainer
|
5 |
datasets:
|
6 |
- imagefolder
|
|
|
14 |
name: Image Classification
|
15 |
type: image-classification
|
16 |
dataset:
|
17 |
+
name: imagefolder
|
18 |
type: imagefolder
|
19 |
config: default
|
20 |
split: train
|
|
|
25 |
value: 0.9265375854214123
|
26 |
- name: Precision
|
27 |
type: precision
|
28 |
+
value: 0.9307429809120586
|
29 |
---
|
30 |
|
31 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
33 |
|
34 |
# swin-base-patch4-window7-224-in22k-finetuned-brain-tumor-final
|
35 |
|
36 |
+
This model is a fine-tuned version of [microsoft/swin-base-patch4-window7-224-in22k](https://huggingface.co/microsoft/swin-base-patch4-window7-224-in22k) on the imagefolder dataset.
|
37 |
It achieves the following results on the evaluation set:
|
38 |
+
- Loss: 0.1955
|
39 |
- Accuracy: 0.9265
|
40 |
- F1 Score: 0.9252
|
41 |
+
- Precision: 0.9307
|
42 |
|
43 |
## Model description
|
44 |
|
|
|
58 |
|
59 |
The following hyperparameters were used during training:
|
60 |
- learning_rate: 1e-05
|
61 |
+
- train_batch_size: 32
|
62 |
+
- eval_batch_size: 32
|
63 |
- seed: 42
|
64 |
- gradient_accumulation_steps: 4
|
65 |
+
- total_train_batch_size: 128
|
66 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
67 |
- lr_scheduler_type: linear
|
68 |
- lr_scheduler_warmup_ratio: 0.1
|
69 |
+
- num_epochs: 20
|
70 |
|
71 |
### Training results
|
72 |
|
73 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 Score | Precision |
|
74 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:--------:|:---------:|
|
75 |
+
| 1.1562 | 0.99 | 41 | 1.1378 | 0.6378 | 0.6191 | 0.6537 |
|
76 |
+
| 0.4878 | 1.99 | 82 | 0.6477 | 0.7591 | 0.7499 | 0.7874 |
|
77 |
+
| 0.2623 | 2.98 | 123 | 0.4410 | 0.8337 | 0.8311 | 0.8488 |
|
78 |
+
| 0.1985 | 4.0 | 165 | 0.4660 | 0.8144 | 0.8115 | 0.8455 |
|
79 |
+
| 0.1736 | 4.99 | 206 | 0.3230 | 0.8776 | 0.8760 | 0.8894 |
|
80 |
+
| 0.124 | 5.99 | 247 | 0.2684 | 0.9026 | 0.9014 | 0.9090 |
|
81 |
+
| 0.1278 | 6.98 | 288 | 0.2210 | 0.9180 | 0.9166 | 0.9210 |
|
82 |
+
| 0.0959 | 8.0 | 330 | 0.2151 | 0.9208 | 0.9195 | 0.9260 |
|
83 |
+
| 0.0849 | 8.99 | 371 | 0.2154 | 0.9220 | 0.9205 | 0.9291 |
|
84 |
+
| 0.0805 | 9.99 | 412 | 0.2112 | 0.9191 | 0.9179 | 0.9251 |
|
85 |
+
| 0.0682 | 10.98 | 453 | 0.1563 | 0.9385 | 0.9369 | 0.9402 |
|
86 |
+
| 0.0624 | 12.0 | 495 | 0.1577 | 0.9396 | 0.9385 | 0.9408 |
|
87 |
+
| 0.0415 | 12.99 | 536 | 0.1836 | 0.9305 | 0.9294 | 0.9332 |
|
88 |
+
| 0.0465 | 13.99 | 577 | 0.2145 | 0.9203 | 0.9192 | 0.9252 |
|
89 |
+
| 0.056 | 14.98 | 618 | 0.1710 | 0.9339 | 0.9325 | 0.9369 |
|
90 |
+
| 0.0545 | 16.0 | 660 | 0.2094 | 0.9248 | 0.9236 | 0.9298 |
|
91 |
+
| 0.0591 | 16.99 | 701 | 0.1752 | 0.9317 | 0.9303 | 0.9341 |
|
92 |
+
| 0.0512 | 17.99 | 742 | 0.1781 | 0.9311 | 0.9297 | 0.9342 |
|
93 |
+
| 0.0424 | 18.98 | 783 | 0.1873 | 0.9305 | 0.9293 | 0.9338 |
|
94 |
+
| 0.0438 | 19.88 | 820 | 0.1955 | 0.9265 | 0.9252 | 0.9307 |
|
95 |
|
96 |
|
97 |
### Framework versions
|