aminnaghavi commited on
Commit
9935df7
·
1 Parent(s): b18afea

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +63 -0
README.md ADDED
@@ -0,0 +1,63 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - generated_from_trainer
5
+ datasets:
6
+ - superb
7
+ model-index:
8
+ - name: wav2vec2-base-dataset_asr-demo-colab
9
+ results: []
10
+ ---
11
+
12
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
13
+ should probably proofread and complete it, then remove this comment. -->
14
+
15
+ # wav2vec2-base-dataset_asr-demo-colab
16
+
17
+ This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the superb dataset.
18
+ It achieves the following results on the evaluation set:
19
+ - Loss: 295.0834
20
+ - Wer: 0.8282
21
+
22
+ ## Model description
23
+
24
+ More information needed
25
+
26
+ ## Intended uses & limitations
27
+
28
+ More information needed
29
+
30
+ ## Training and evaluation data
31
+
32
+ More information needed
33
+
34
+ ## Training procedure
35
+
36
+ ### Training hyperparameters
37
+
38
+ The following hyperparameters were used during training:
39
+ - learning_rate: 0.001
40
+ - train_batch_size: 32
41
+ - eval_batch_size: 8
42
+ - seed: 42
43
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
44
+ - lr_scheduler_type: linear
45
+ - lr_scheduler_warmup_steps: 250
46
+ - num_epochs: 5
47
+ - mixed_precision_training: Native AMP
48
+
49
+ ### Training results
50
+
51
+ | Training Loss | Epoch | Step | Validation Loss | Wer |
52
+ |:-------------:|:-----:|:----:|:---------------:|:------:|
53
+ | 5638.536 | 1.6 | 500 | 409.4785 | 0.8556 |
54
+ | 2258.6455 | 3.19 | 1000 | 326.0520 | 0.8369 |
55
+ | 1389.4919 | 4.79 | 1500 | 295.0834 | 0.8282 |
56
+
57
+
58
+ ### Framework versions
59
+
60
+ - Transformers 4.20.0
61
+ - Pytorch 1.11.0+cu113
62
+ - Datasets 2.3.2
63
+ - Tokenizers 0.12.1