|
import copy |
|
import math |
|
import pickle |
|
import numpy as np |
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
import difflib |
|
from typing import Optional, Tuple, Union |
|
|
|
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor, BertTokenizer, BertModel, Wav2Vec2Model, Wav2Vec2Config |
|
from transformers.models.wav2vec2.modeling_wav2vec2 import Wav2Vec2FeatureEncoder |
|
from .motion_encoder import VQEncoderV6 |
|
|
|
|
|
def audio_to_time_aligned_text_features(inputs, processor, model, tokenizer, bert_model): |
|
with torch.no_grad(): |
|
logits = model(inputs.input_values).logits |
|
|
|
predicted_ids_per_timestep = torch.argmax(logits, dim=-1) |
|
predicted_ids_per_timestep = predicted_ids_per_timestep[0].cpu().numpy() |
|
vocab = processor.tokenizer.get_vocab() |
|
id_to_token = {v: k for k, v in vocab.items()} |
|
tokens_per_timestep = [id_to_token[id] for id in predicted_ids_per_timestep] |
|
|
|
predicted_ids = torch.argmax(logits, dim=-1) |
|
transcription = processor.decode(predicted_ids[0]) |
|
inputs_bert = tokenizer(transcription, return_tensors='pt') |
|
input_ids = inputs_bert['input_ids'][0] |
|
tokens_bert = tokenizer.convert_ids_to_tokens(input_ids) |
|
|
|
with torch.no_grad(): |
|
outputs_bert = bert_model(**inputs_bert.to(inputs.input_values.device)) |
|
all_token_embeddings = outputs_bert.last_hidden_state[0] |
|
per_timestep_chars = [] |
|
per_timestep_char_indices = [] |
|
for idx, t in enumerate(tokens_per_timestep): |
|
if t not in ('<pad>', '|'): |
|
per_timestep_chars.append(t.lower()) |
|
per_timestep_char_indices.append(idx) |
|
bert_chars = [] |
|
bert_char_indices = [] |
|
for idx, token in enumerate(tokens_bert): |
|
if token in ('[CLS]', '[SEP]'): |
|
continue |
|
token_str = token.replace('##', '') |
|
for c in token_str: |
|
bert_chars.append(c) |
|
bert_char_indices.append(idx) |
|
|
|
s = difflib.SequenceMatcher(None, per_timestep_chars, bert_chars) |
|
opcodes = s.get_opcodes() |
|
per_timestep_to_bert_token_idx = {} |
|
for tag, i1, i2, j1, j2 in opcodes: |
|
if tag == 'equal': |
|
for k in range(i2 - i1): |
|
per_timestep_idx = per_timestep_char_indices[i1 + k] |
|
bert_token_idx = bert_char_indices[j1 + k] |
|
per_timestep_to_bert_token_idx[per_timestep_idx] = bert_token_idx |
|
features_per_timestep = [] |
|
check = [] |
|
for i, per_token in enumerate(tokens_per_timestep): |
|
if i == 0: |
|
embedding = all_token_embeddings[0] |
|
check.append("cls") |
|
elif per_token in ('<pad>', '|'): |
|
embedding = torch.zeros(all_token_embeddings.shape[-1]).to(inputs.input_values.device) |
|
check.append(0) |
|
else: |
|
if i in per_timestep_to_bert_token_idx: |
|
bert_idx = per_timestep_to_bert_token_idx[i] |
|
embedding = all_token_embeddings[bert_idx] |
|
check.append(tokens_bert[bert_idx]) |
|
else: |
|
embedding = torch.zeros(all_token_embeddings.shape[-1]).to(inputs.input_values.device) |
|
check.append(0) |
|
features_per_timestep.append(embedding) |
|
features_per_timestep = torch.stack(features_per_timestep) |
|
|
|
updated_check = check.copy() |
|
for i in range(len(check)): |
|
if check[i] == 0: |
|
left = i - 1 |
|
right = i + 1 |
|
left_found = False |
|
right_found = False |
|
|
|
while left >= 0: |
|
if check[left] != 0: |
|
left_found = True |
|
break |
|
left -= 1 |
|
|
|
while right < len(check): |
|
if check[right] != 0: |
|
right_found = True |
|
break |
|
right += 1 |
|
|
|
if left_found and right_found: |
|
if (i - left) <= (right - i): |
|
nearest = left |
|
else: |
|
nearest = right |
|
elif left_found: |
|
nearest = left |
|
elif right_found: |
|
nearest = right |
|
else: |
|
continue |
|
updated_check[i] = updated_check[nearest] |
|
features_per_timestep[i] = features_per_timestep[nearest] |
|
features_per_timestep = features_per_timestep.unsqueeze(0) |
|
return transcription, features_per_timestep, all_token_embeddings |
|
|
|
|
|
class MLP(nn.Module): |
|
def __init__(self, in_dim, hidden_size, out_dim): |
|
super().__init__() |
|
self.mlp = nn.Sequential( |
|
nn.Linear(in_dim, hidden_size), |
|
nn.LeakyReLU(0.2, True), |
|
nn.Linear(hidden_size, out_dim) |
|
) |
|
def forward(self, inputs): |
|
out = self.mlp(inputs) |
|
return out |
|
|
|
|
|
class PeriodicPositionalEncoding(nn.Module): |
|
def __init__(self, d_model, dropout=0.1, period=20, max_seq_len=64): |
|
super(PeriodicPositionalEncoding, self).__init__() |
|
self.dropout = nn.Dropout(p=dropout) |
|
pe = torch.zeros(period, d_model) |
|
position = torch.arange(0, period, dtype=torch.float).unsqueeze(1) |
|
div_term = torch.exp(torch.arange(0, d_model, 2).float() * (-math.log(10000.0) / d_model)) |
|
pe[:, 0::2] = torch.sin(position * div_term) |
|
pe[:, 1::2] = torch.cos(position * div_term) |
|
pe = pe.unsqueeze(0) |
|
repeat_num = (max_seq_len//period) + 1 |
|
pe = pe.repeat(1, repeat_num, 1) |
|
self.register_buffer('pe', pe) |
|
def forward(self, x): |
|
|
|
x = x + self.pe[:, :x.size(1), :] |
|
return self.dropout(x) |
|
|
|
|
|
class CustomMultiheadAttention(nn.Module): |
|
def __init__(self, embed_dim, num_heads): |
|
super(CustomMultiheadAttention, self).__init__() |
|
self.num_heads = num_heads |
|
self.head_dim = embed_dim // num_heads |
|
assert self.head_dim * num_heads == embed_dim, "embed_dim must be divisible by num_heads" |
|
|
|
self.query_proj = nn.Linear(embed_dim, embed_dim) |
|
self.key_proj = nn.Linear(embed_dim, embed_dim) |
|
self.value_proj = nn.Linear(embed_dim, embed_dim) |
|
self.out_proj = nn.Linear(embed_dim, embed_dim) |
|
|
|
def forward(self, query, key, value): |
|
batch_size, seq_len, embed_dim = query.size() |
|
|
|
|
|
Q = self.query_proj(query).view(batch_size, seq_len, self.num_heads, self.head_dim).transpose(1, 2) |
|
K = self.key_proj(key).view(batch_size, seq_len, self.num_heads, self.head_dim).transpose(1, 2) |
|
V = self.value_proj(value).view(batch_size, seq_len, self.num_heads, self.head_dim).transpose(1, 2) |
|
|
|
|
|
scores = torch.matmul(Q, K.transpose(-2, -1)) / (self.head_dim ** 0.5) |
|
attn_weights = F.softmax(scores, dim=-1) |
|
attn_output = torch.matmul(attn_weights, V) |
|
|
|
|
|
attn_output = attn_output.transpose(1, 2).contiguous().view(batch_size, seq_len, embed_dim) |
|
|
|
|
|
output = self.out_proj(attn_output) |
|
return output, attn_weights |
|
|
|
|
|
def reinitialize_weights(module): |
|
for submodule in module.modules(): |
|
weight = getattr(submodule, 'weight', None) |
|
if weight is not None and isinstance(weight, torch.Tensor) and weight.dim() >= 2: |
|
torch.nn.init.xavier_uniform_(weight) |
|
print("init") |
|
elif weight is not None and isinstance(weight, torch.Tensor): |
|
torch.nn.init.normal_(weight, mean=0.0, std=0.02) |
|
print("init") |
|
bias = getattr(submodule, 'bias', None) |
|
if bias is not None and isinstance(bias, torch.Tensor): |
|
torch.nn.init.zeros_(bias) |
|
|
|
|
|
class WrapedMotionCNN(nn.Module): |
|
def __init__(self, args): |
|
super(WrapedMotionCNN, self).__init__() |
|
self.args = args |
|
encoder_layer = nn.TransformerEncoderLayer( |
|
d_model=self.args.motion_f, |
|
nhead=8, |
|
dim_feedforward=self.args.hidden_size, |
|
dropout=0.1, |
|
batch_first=True |
|
) |
|
args_top = copy.deepcopy(self.args) |
|
args_top.vae_layer = 3 |
|
args_top.vae_length = self.args.motion_f |
|
args_top.vae_test_dim = self.args.motion_dim |
|
self.feature_extractor = VQEncoderV6(args_top) |
|
|
|
|
|
args_top = copy.deepcopy(self.args) |
|
args_top.vae_layer = 6 |
|
args_top.vae_length = self.args.motion_f |
|
args_top.vae_test_dim = self.args.motion_dim + self.args.motion_f |
|
|
|
self.encoder_cnn = VQEncoderV6(args_top) |
|
self.pos_encoding = PeriodicPositionalEncoding(d_model=self.args.motion_f, period=20, max_seq_len=64, dropout=0.0) |
|
self.encoder_trans = nn.TransformerEncoder(encoder_layer, num_layers=1) |
|
|
|
def forward(self, |
|
inputs, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
mask_time_indices: Optional[torch.FloatTensor] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None |
|
): |
|
low_level = self.feature_extractor(inputs) |
|
|
|
hidden_states = self.encoder_cnn(torch.cat([low_level.detach(), inputs], dim=-1)) |
|
hidden_states = self.pos_encoding(hidden_states) |
|
hidden_states = self.encoder_trans(hidden_states) |
|
return { |
|
"low_level": low_level, |
|
"high_level": hidden_states |
|
} |
|
|
|
|
|
class WrapedWav2Vec(nn.Module): |
|
def __init__(self): |
|
super(WrapedWav2Vec, self).__init__() |
|
self.feature_extractor = Wav2Vec2Model.from_pretrained('facebook/wav2vec2-base-960h').feature_extractor |
|
self.feature_projection = Wav2Vec2Model.from_pretrained('facebook/wav2vec2-base-960h').feature_projection |
|
self.encoder = Wav2Vec2Model.from_pretrained('facebook/wav2vec2-base-960h').encoder |
|
|
|
self.encoder.layers = self.encoder.layers[:1] |
|
|
|
self.proj_down = nn.Linear(768,512) |
|
|
|
|
|
def forward(self, |
|
inputs, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
mask_time_indices: Optional[torch.FloatTensor] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None |
|
): |
|
finetune_audio_low = self.feature_extractor(inputs).transpose(1, 2) |
|
hidden_states, _ = self.feature_projection(finetune_audio_low.detach()) |
|
encoder_outputs = self.encoder( |
|
hidden_states, |
|
attention_mask=attention_mask, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
hidden_states = encoder_outputs[0] |
|
hidden_states = self.proj_down(hidden_states) |
|
|
|
return { |
|
"low_level": finetune_audio_low, |
|
"high_level": hidden_states |
|
} |
|
|
|
|
|
class JointEmbedding(nn.Module): |
|
def __init__(self, args): |
|
super(JointEmbedding, self).__init__() |
|
self.args = args.model |
|
self.audio_processor = Wav2Vec2Processor.from_pretrained('facebook/wav2vec2-base-960h') |
|
self.audio_encoder = Wav2Vec2Model.from_pretrained('facebook/wav2vec2-base-960h') |
|
self.config_wav2vec = Wav2Vec2Config.from_pretrained('facebook/wav2vec2-base-960h') |
|
|
|
self.audio_encoder_fintune = WrapedWav2Vec() |
|
|
|
|
|
|
|
self.asr = Wav2Vec2ForCTC.from_pretrained('facebook/wav2vec2-base-960h') |
|
self.bert_tokenizer = BertTokenizer.from_pretrained('bert-base-uncased') |
|
self.bert_model = BertModel.from_pretrained('bert-base-uncased') |
|
|
|
self.audio_low_mapping = MLP(512+512, self.args.hidden_size, self.args.audio_f) |
|
self.audio_high_mapping = MLP(512+512+512, self.args.hidden_size, self.args.audio_f) |
|
|
|
self.audio_down_proj_2 = nn.Linear(768, 512) |
|
self.audio_down_proj_3 = nn.Linear(768, 512) |
|
|
|
self.audio_sa = CustomMultiheadAttention(embed_dim=self.args.audio_f, num_heads=8,) |
|
|
|
self.motion_encoder_fintune = WrapedMotionCNN(self.args) |
|
self.motion_low_mapping = MLP(self.args.motion_f, self.args.hidden_size, self.args.motion_f) |
|
self.motion_high_mapping = MLP(self.args.motion_f, self.args.hidden_size, self.args.motion_f) |
|
|
|
self.motion_sa = CustomMultiheadAttention(embed_dim=self.args.audio_f, num_heads=8,) |
|
|
|
self.down_sample = 2 |
|
self.smplx_model = None |
|
self.get_motion_reps = None |
|
self.audio_to_time_aligned_text_features = audio_to_time_aligned_text_features |
|
self.low_temp = nn.Parameter(torch.tensor(0.07)) |
|
self.low_level_loss_fn = None |
|
self.high_temp = nn.Parameter(torch.tensor(0.07)) |
|
self.high_level_loss_fn = None |
|
|
|
def _reset_parameters(self): |
|
nn.init.normal_(self.mask_embeddings, 0, self.args.hidden_size ** -0.5) |
|
|
|
def forward(self, in_audio=None, in_motion=None, cached_audio_low=None, cached_audio_high=None, cached_rep15d=None): |
|
|
|
if cached_rep15d is not None: |
|
in_motion = cached_rep15d[:,::self.down_sample] |
|
else: |
|
in_motion = self.get_motion_reps(in_motion, self.smplx_model)["rep15d"][:,::self.down_sample] |
|
|
|
motion_features = self.motion_encoder_fintune(in_motion) |
|
raw_motion_low = motion_features["low_level"] |
|
raw_motion_high = motion_features["high_level"] |
|
|
|
motion_low = self.motion_low_mapping(raw_motion_low) |
|
motion_high = self.motion_high_mapping(raw_motion_high) |
|
motion_high_att, motion_high_weight = self.motion_sa(motion_high, motion_high, motion_high) |
|
bs, n, c = motion_high.shape |
|
|
|
motion_high_att_before_sum = motion_high_weight[:, :, 0, :].unsqueeze(2) * motion_high.transpose(1, 2).view(bs, 8, c//8, n) |
|
motion_high_att_before_sum = motion_high_att_before_sum.reshape(bs, c, n).transpose(1, 2) |
|
motion_low = F.interpolate(motion_low.transpose(1, 2), scale_factor=2, mode='linear', align_corners=True).transpose(1, 2) |
|
motion_high_att = F.interpolate(motion_high_att.transpose(1, 2), scale_factor=2, mode='linear', align_corners=True).transpose(1, 2) |
|
motion_high_att_before_sum = F.interpolate(motion_high_att_before_sum.transpose(1, 2), scale_factor=2, mode='linear', align_corners=True).transpose(1, 2) |
|
motion_cls = motion_high_att[:, 0] |
|
|
|
|
|
if cached_audio_low is not None: |
|
raw_audio_low = cached_audio_low |
|
raw_audio_high = torch.cat([self.audio_down_proj_2(cached_audio_high[:, :, :768]), self.audio_down_proj_3(cached_audio_high[:, :, 768:])], dim=-1) |
|
|
|
audio_list = [i.cpu().numpy() for i in in_audio] |
|
inputs = self.audio_processor(audio_list, sampling_rate=16000, return_tensors="pt", padding=True).to(in_audio.device) |
|
finetune_audio = self.audio_encoder_fintune(inputs.input_values) |
|
finetune_audio_low, finetune_audio_high = finetune_audio["low_level"], finetune_audio["high_level"] |
|
diff = raw_audio_low.shape[1] - finetune_audio_low.shape[1] |
|
if diff > 0: |
|
finetune_audio_low = torch.cat([finetune_audio_low, finetune_audio_low[:, -diff:]], dim=1) |
|
diff = raw_audio_high.shape[1] - finetune_audio_high.shape[1] |
|
if diff > 0: |
|
finetune_audio_high = torch.cat([finetune_audio_high, finetune_audio_high[:, -diff:]], dim=1) |
|
raw_audio_low = torch.cat([raw_audio_low, finetune_audio_low], dim=-1) |
|
else: |
|
print("error! must have cached audio in training") |
|
|
|
|
|
|
|
raw_audio_low = F.interpolate(raw_audio_low.transpose(1, 2), scale_factor=30/50, mode='linear', align_corners=True).transpose(1, 2) |
|
raw_audio_high = F.interpolate(raw_audio_high.transpose(1, 2), scale_factor=15/50, mode='linear', align_corners=True).transpose(1, 2) |
|
finetune_audio_high = F.interpolate(finetune_audio_high.transpose(1, 2), scale_factor=15/50, mode='linear', align_corners=True).transpose(1, 2) |
|
|
|
audio_low = self.audio_low_mapping(raw_audio_low) |
|
raw_audio_high = torch.cat([finetune_audio_high, raw_audio_high], dim=-1) |
|
|
|
audio_high = self.audio_high_mapping(raw_audio_high) |
|
audio_high_att, audio_high_weight = self.audio_sa(audio_high, audio_high, audio_high) |
|
bs, n, c = audio_high.shape |
|
audio_high_att_before_sum = audio_high_weight[:, :, 0, :].unsqueeze(2) * audio_high.transpose(1, 2).view(bs, 8, c//8, n) |
|
audio_high_att_before_sum = audio_high_att_before_sum.reshape(bs, c, n).transpose(1, 2) |
|
audio_high_att = F.interpolate(audio_high_att.transpose(1, 2), scale_factor=2, mode='linear', align_corners=True).transpose(1, 2) |
|
audio_high_att_before_sum = F.interpolate(audio_high_att_before_sum.transpose(1, 2), scale_factor=2, mode='linear', align_corners=True).transpose(1, 2) |
|
audio_cls = audio_high_att[:, 0] |
|
|
|
|
|
|
|
low_infonce, low_acc = self.low_level_loss_fn(audio_low, motion_low) |
|
high_infonce = self.high_level_loss_fn(audio_cls, motion_cls) |
|
return { |
|
"audio_low":audio_low, |
|
"audio_high":audio_high_att, |
|
"audio_cls":audio_cls, |
|
"audio_high_weight":audio_high_att_before_sum, |
|
"motion_low":motion_low, |
|
"motion_high":motion_high_att, |
|
"motion_cls":motion_cls, |
|
"motion_high_weight":motion_high_att_before_sum, |
|
"low_level_loss": [low_infonce, low_acc], |
|
"high_level_loss": high_infonce |
|
} |
|
|
|
def get_audio_features(self, in_audio): |
|
audio_list = [i.cpu().numpy() for i in in_audio] |
|
inputs = self.audio_processor(audio_list, sampling_rate=16000, return_tensors="pt", padding=True).to(in_audio.device) |
|
raw_audio_low = self.audio_encoder.feature_extractor(inputs.input_values).transpose(1, 2) |
|
raw_audio_low = raw_audio_low |
|
|
|
finetune_audio = self.audio_encoder_fintune(inputs.input_values) |
|
finetune_audio_low, finetune_audio_high = finetune_audio["low_level"], finetune_audio["high_level"] |
|
diff = raw_audio_low.shape[1] - finetune_audio_low.shape[1] |
|
if diff > 0: |
|
finetune_audio_low = torch.cat([finetune_audio_low, finetune_audio_low[:, -diff:]], dim=1) |
|
raw_audio_low = torch.cat([raw_audio_low, finetune_audio_low], dim=-1) |
|
|
|
raw_audio_high = self.audio_encoder(inputs.input_values).last_hidden_state |
|
|
|
diff = raw_audio_high.shape[1] - finetune_audio_high.shape[1] |
|
if diff > 0: |
|
finetune_audio_high = torch.cat([finetune_audio_high, finetune_audio_high[:, -diff:]], dim=1) |
|
|
|
|
|
_, bert_time_aligned_text, _ = audio_to_time_aligned_text_features(inputs, self.audio_processor, self.asr, self.bert_tokenizer, self.bert_model) |
|
raw_audio_high = torch.cat([raw_audio_high, bert_time_aligned_text], dim=2) |
|
raw_audio_high = torch.cat([self.audio_down_proj_2(raw_audio_high[:, :, :768]), self.audio_down_proj_3(raw_audio_high[:, :, 768:])], dim=-1) |
|
|
|
raw_audio_low = F.interpolate(raw_audio_low.transpose(1, 2), scale_factor=30/50, mode='linear', align_corners=True).transpose(1, 2) |
|
raw_audio_high = F.interpolate(raw_audio_high.transpose(1, 2), scale_factor=15/50, mode='linear', align_corners=True).transpose(1, 2) |
|
finetune_audio_high = F.interpolate(finetune_audio_high.transpose(1, 2), scale_factor=15/50, mode='linear', align_corners=True).transpose(1, 2) |
|
|
|
if raw_audio_low.shape[1] % 2 == 1: |
|
raw_audio_low = torch.cat([raw_audio_low, raw_audio_low[:, -1:]], dim=1) |
|
diff = raw_audio_low[:, ::2].shape[1] - raw_audio_high.shape[1] |
|
if diff > 0: |
|
raw_audio_high = torch.cat([raw_audio_high, raw_audio_high[:, -diff:]], dim=1) |
|
finetune_audio_high = torch.cat([finetune_audio_high, finetune_audio_high[:, -diff:]], dim=1) |
|
|
|
audio_low = self.audio_low_mapping(raw_audio_low) |
|
|
|
raw_audio_high = torch.cat([finetune_audio_high, raw_audio_high], dim=-1) |
|
audio_high = self.audio_high_mapping(raw_audio_high) |
|
audio_high_att, audio_high_weight = self.audio_sa(audio_high, audio_high, audio_high) |
|
bs, n, c = audio_high.shape |
|
audio_high_att_before_sum = audio_high_weight[:, :, 0, :].unsqueeze(2) * audio_high.transpose(1, 2).view(bs, 8, c//8, n) |
|
audio_high_att_before_sum = audio_high_att_before_sum.reshape(bs, c, n).transpose(1, 2) |
|
audio_high_att = F.interpolate(audio_high_att.transpose(1, 2), scale_factor=2, mode='linear', align_corners=True).transpose(1, 2) |
|
audio_high_att_before_sum = F.interpolate(audio_high_att_before_sum.transpose(1, 2), scale_factor=2, mode='linear', align_corners=True).transpose(1, 2) |
|
audio_cls = audio_high_att[:, 0] |
|
return { |
|
"audio_low":audio_low, |
|
"audio_high":audio_high_att, |
|
"audio_cls":audio_cls, |
|
"audio_high_weight":audio_high_att_before_sum, |
|
} |
|
|
|
def get_motion_features(self, in_motion): |
|
original_length = in_motion.shape[1] |
|
|
|
in_motion = self.get_motion_reps(in_motion, self.smplx_model)["rep15d"][:,::self.down_sample] |
|
motion_features = self.motion_encoder_fintune(in_motion) |
|
raw_motion_low = motion_features["low_level"] |
|
raw_motion_high = motion_features["high_level"] |
|
motion_low = self.motion_low_mapping(raw_motion_low) |
|
motion_high = self.motion_high_mapping(raw_motion_high) |
|
|
|
motion_high_att, motion_high_weight = self.motion_sa(motion_high, motion_high, motion_high) |
|
bs, n, c = motion_high.shape |
|
motion_high_att_before_sum = motion_high_weight[:, :, 0, :].unsqueeze(2) * motion_high.transpose(1, 2).view(bs, 8, c//8, n) |
|
motion_high_att_before_sum = motion_high_att_before_sum.reshape(bs, c, n).transpose(1, 2) |
|
motion_low = F.interpolate(motion_low.transpose(1, 2), scale_factor=2, mode='linear', align_corners=True).transpose(1, 2) |
|
motion_high_att = F.interpolate(motion_high_att.transpose(1, 2), scale_factor=2, mode='linear', align_corners=True).transpose(1, 2) |
|
motion_high_att_before_sum = F.interpolate(motion_high_att_before_sum.transpose(1, 2), scale_factor=2, mode='linear', align_corners=True).transpose(1, 2) |
|
|
|
|
|
motion_low = motion_low[:, :original_length] |
|
motion_high_att = motion_high_att[:, :original_length] |
|
motion_high_att_before_sum = motion_high_att_before_sum[:, :original_length] |
|
|
|
motion_cls = motion_high_att[:, 0] |
|
|
|
return { |
|
"motion_low":motion_low, |
|
"motion_high":motion_high_att, |
|
"motion_cls":motion_cls, |
|
"motion_high_weight":motion_high_att_before_sum, |
|
} |
|
|