|
from __future__ import print_function |
|
import os |
|
import torch |
|
from torch.utils.model_zoo import load_url |
|
from enum import Enum |
|
import numpy as np |
|
import cv2 |
|
try: |
|
import urllib.request as request_file |
|
except BaseException: |
|
import urllib as request_file |
|
|
|
from .models import FAN, ResNetDepth |
|
from .utils import * |
|
|
|
|
|
class LandmarksType(Enum): |
|
"""Enum class defining the type of landmarks to detect. |
|
|
|
``_2D`` - the detected points ``(x,y)`` are detected in a 2D space and follow the visible contour of the face |
|
``_2halfD`` - this points represent the projection of the 3D points into 3D |
|
``_3D`` - detect the points ``(x,y,z)``` in a 3D space |
|
|
|
""" |
|
_2D = 1 |
|
_2halfD = 2 |
|
_3D = 3 |
|
|
|
|
|
class NetworkSize(Enum): |
|
|
|
|
|
|
|
LARGE = 4 |
|
|
|
def __new__(cls, value): |
|
member = object.__new__(cls) |
|
member._value_ = value |
|
return member |
|
|
|
def __int__(self): |
|
return self.value |
|
|
|
|
|
|
|
class FaceAlignment: |
|
def __init__(self, landmarks_type, network_size=NetworkSize.LARGE, |
|
device='cuda', flip_input=False, face_detector='sfd', verbose=False): |
|
self.device = device |
|
self.flip_input = flip_input |
|
self.landmarks_type = landmarks_type |
|
self.verbose = verbose |
|
|
|
network_size = int(network_size) |
|
|
|
if 'cuda' in device: |
|
torch.backends.cudnn.benchmark = True |
|
|
|
|
|
|
|
|
|
print('cuda start') |
|
|
|
|
|
|
|
face_detector_module = __import__('face_detection.detection.' + face_detector, |
|
globals(), locals(), [face_detector], 0) |
|
|
|
self.face_detector = face_detector_module.FaceDetector(device=device, verbose=verbose) |
|
|
|
def get_detections_for_batch(self, images): |
|
images = images[..., ::-1] |
|
detected_faces = self.face_detector.detect_from_batch(images.copy()) |
|
results = [] |
|
|
|
for i, d in enumerate(detected_faces): |
|
if len(d) == 0: |
|
results.append(None) |
|
continue |
|
d = d[0] |
|
d = np.clip(d, 0, None) |
|
|
|
x1, y1, x2, y2 = map(int, d[:-1]) |
|
results.append((x1, y1, x2, y2)) |
|
|
|
return results |
|
|
|
|
|
class YOLOv8_face: |
|
def __init__(self, path = 'face_detection/weights/yolov8n-face.onnx', conf_thres=0.2, iou_thres=0.5): |
|
self.conf_threshold = conf_thres |
|
self.iou_threshold = iou_thres |
|
self.class_names = ['face'] |
|
self.num_classes = len(self.class_names) |
|
|
|
self.net = cv2.dnn.readNet(path) |
|
self.input_height = 640 |
|
self.input_width = 640 |
|
self.reg_max = 16 |
|
|
|
self.project = np.arange(self.reg_max) |
|
self.strides = (8, 16, 32) |
|
self.feats_hw = [(math.ceil(self.input_height / self.strides[i]), math.ceil(self.input_width / self.strides[i])) for i in range(len(self.strides))] |
|
self.anchors = self.make_anchors(self.feats_hw) |
|
|
|
def make_anchors(self, feats_hw, grid_cell_offset=0.5): |
|
"""Generate anchors from features.""" |
|
anchor_points = {} |
|
for i, stride in enumerate(self.strides): |
|
h,w = feats_hw[i] |
|
x = np.arange(0, w) + grid_cell_offset |
|
y = np.arange(0, h) + grid_cell_offset |
|
sx, sy = np.meshgrid(x, y) |
|
|
|
anchor_points[stride] = np.stack((sx, sy), axis=-1).reshape(-1, 2) |
|
return anchor_points |
|
|
|
def softmax(self, x, axis=1): |
|
x_exp = np.exp(x) |
|
|
|
x_sum = np.sum(x_exp, axis=axis, keepdims=True) |
|
s = x_exp / x_sum |
|
return s |
|
|
|
def resize_image(self, srcimg, keep_ratio=True): |
|
top, left, newh, neww = 0, 0, self.input_width, self.input_height |
|
if keep_ratio and srcimg.shape[0] != srcimg.shape[1]: |
|
hw_scale = srcimg.shape[0] / srcimg.shape[1] |
|
if hw_scale > 1: |
|
newh, neww = self.input_height, int(self.input_width / hw_scale) |
|
img = cv2.resize(srcimg, (neww, newh), interpolation=cv2.INTER_AREA) |
|
left = int((self.input_width - neww) * 0.5) |
|
img = cv2.copyMakeBorder(img, 0, 0, left, self.input_width - neww - left, cv2.BORDER_CONSTANT, |
|
value=(0, 0, 0)) |
|
else: |
|
newh, neww = int(self.input_height * hw_scale), self.input_width |
|
img = cv2.resize(srcimg, (neww, newh), interpolation=cv2.INTER_AREA) |
|
top = int((self.input_height - newh) * 0.5) |
|
img = cv2.copyMakeBorder(img, top, self.input_height - newh - top, 0, 0, cv2.BORDER_CONSTANT, |
|
value=(0, 0, 0)) |
|
else: |
|
img = cv2.resize(srcimg, (self.input_width, self.input_height), interpolation=cv2.INTER_AREA) |
|
return img, newh, neww, top, left |
|
|
|
def detect(self, srcimg): |
|
input_img, newh, neww, padh, padw = self.resize_image(cv2.cvtColor(srcimg, cv2.COLOR_BGR2RGB)) |
|
scale_h, scale_w = srcimg.shape[0]/newh, srcimg.shape[1]/neww |
|
input_img = input_img.astype(np.float32) / 255.0 |
|
|
|
blob = cv2.dnn.blobFromImage(input_img) |
|
self.net.setInput(blob) |
|
outputs = self.net.forward(self.net.getUnconnectedOutLayersNames()) |
|
|
|
|
|
|
|
|
|
|
|
det_bboxes, det_conf, det_classid, landmarks = self.post_process(outputs, scale_h, scale_w, padh, padw) |
|
return det_bboxes, det_conf, det_classid, landmarks |
|
|
|
def post_process(self, preds, scale_h, scale_w, padh, padw): |
|
bboxes, scores, landmarks = [], [], [] |
|
for i, pred in enumerate(preds): |
|
stride = int(self.input_height/pred.shape[2]) |
|
pred = pred.transpose((0, 2, 3, 1)) |
|
|
|
box = pred[..., :self.reg_max * 4] |
|
cls = 1 / (1 + np.exp(-pred[..., self.reg_max * 4:-15])).reshape((-1,1)) |
|
kpts = pred[..., -15:].reshape((-1,15)) |
|
|
|
|
|
tmp = box.reshape(-1, 4, self.reg_max) |
|
bbox_pred = self.softmax(tmp, axis=-1) |
|
bbox_pred = np.dot(bbox_pred, self.project).reshape((-1,4)) |
|
|
|
bbox = self.distance2bbox(self.anchors[stride], bbox_pred, max_shape=(self.input_height, self.input_width)) * stride |
|
kpts[:, 0::3] = (kpts[:, 0::3] * 2.0 + (self.anchors[stride][:, 0].reshape((-1,1)) - 0.5)) * stride |
|
kpts[:, 1::3] = (kpts[:, 1::3] * 2.0 + (self.anchors[stride][:, 1].reshape((-1,1)) - 0.5)) * stride |
|
kpts[:, 2::3] = 1 / (1+np.exp(-kpts[:, 2::3])) |
|
|
|
bbox -= np.array([[padw, padh, padw, padh]]) |
|
bbox *= np.array([[scale_w, scale_h, scale_w, scale_h]]) |
|
kpts -= np.tile(np.array([padw, padh, 0]), 5).reshape((1,15)) |
|
kpts *= np.tile(np.array([scale_w, scale_h, 1]), 5).reshape((1,15)) |
|
|
|
bboxes.append(bbox) |
|
scores.append(cls) |
|
landmarks.append(kpts) |
|
|
|
bboxes = np.concatenate(bboxes, axis=0) |
|
scores = np.concatenate(scores, axis=0) |
|
landmarks = np.concatenate(landmarks, axis=0) |
|
|
|
bboxes_wh = bboxes.copy() |
|
bboxes_wh[:, 2:4] = bboxes[:, 2:4] - bboxes[:, 0:2] |
|
classIds = np.argmax(scores, axis=1) |
|
confidences = np.max(scores, axis=1) |
|
|
|
mask = confidences>self.conf_threshold |
|
bboxes_wh = bboxes_wh[mask] |
|
confidences = confidences[mask] |
|
classIds = classIds[mask] |
|
landmarks = landmarks[mask] |
|
|
|
indices = cv2.dnn.NMSBoxes(bboxes_wh.tolist(), confidences.tolist(), self.conf_threshold, |
|
self.iou_threshold).flatten() |
|
if len(indices) > 0: |
|
mlvl_bboxes = bboxes_wh[indices] |
|
confidences = confidences[indices] |
|
classIds = classIds[indices] |
|
landmarks = landmarks[indices] |
|
return mlvl_bboxes, confidences, classIds, landmarks |
|
else: |
|
print('nothing detect') |
|
return np.array([]), np.array([]), np.array([]), np.array([]) |
|
|
|
def distance2bbox(self, points, distance, max_shape=None): |
|
x1 = points[:, 0] - distance[:, 0] |
|
y1 = points[:, 1] - distance[:, 1] |
|
x2 = points[:, 0] + distance[:, 2] |
|
y2 = points[:, 1] + distance[:, 3] |
|
if max_shape is not None: |
|
x1 = np.clip(x1, 0, max_shape[1]) |
|
y1 = np.clip(y1, 0, max_shape[0]) |
|
x2 = np.clip(x2, 0, max_shape[1]) |
|
y2 = np.clip(y2, 0, max_shape[0]) |
|
return np.stack([x1, y1, x2, y2], axis=-1) |
|
|
|
def draw_detections(self, image, boxes, scores, kpts): |
|
for box, score, kp in zip(boxes, scores, kpts): |
|
x, y, w, h = box.astype(int) |
|
|
|
cv2.rectangle(image, (x, y), (x + w, y + h), (0, 0, 255), thickness=3) |
|
cv2.putText(image, "face:"+str(round(score,2)), (x, y - 5), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 255), thickness=2) |
|
for i in range(5): |
|
cv2.circle(image, (int(kp[i * 3]), int(kp[i * 3 + 1])), 4, (0, 255, 0), thickness=-1) |
|
|
|
return image |
|
|
|
ROOT = os.path.dirname(os.path.abspath(__file__)) |