retinaface / utils.py
hongywei's picture
Update utils.py
8b4b482 verified
raw
history blame
7.9 kB
import numpy as np
import cv2
from itertools import product as product
from math import ceil
import torch
import torch.nn.functional as F
class PriorBox(object):
def __init__(self, cfg, image_size=None, phase="train"):
super(PriorBox, self).__init__()
self.min_sizes = cfg["min_sizes"]
self.steps = cfg["steps"]
self.clip = cfg["clip"]
self.image_size = image_size
self.feature_maps = [
[ceil(self.image_size[0] / step), ceil(self.image_size[1] / step)]
for step in self.steps
]
def forward(self):
anchors = []
for k, f in enumerate(self.feature_maps):
min_sizes = self.min_sizes[k]
for i, j in product(range(f[0]), range(f[1])):
for min_size in min_sizes:
s_kx = min_size / self.image_size[1]
s_ky = min_size / self.image_size[0]
dense_cx = [
x * self.steps[k] / self.image_size[1] for x in [j + 0.5]
]
dense_cy = [
y * self.steps[k] / self.image_size[0] for y in [i + 0.5]
]
for cy, cx in product(dense_cy, dense_cx):
anchors += [cx, cy, s_kx, s_ky]
# back to torch land
output = torch.Tensor(anchors).view(-1, 4)
if self.clip:
output.clamp_(max=1, min=0)
return output
def py_cpu_nms(dets, thresh):
"""Pure Python NMS baseline.
Args:
dets: detections before nms
thresh: nms threshold
Return:
keep: index after nms
"""
x1 = dets[:, 0]
y1 = dets[:, 1]
x2 = dets[:, 2]
y2 = dets[:, 3]
scores = dets[:, 4]
areas = (x2 - x1 + 1) * (y2 - y1 + 1)
order = scores.argsort()[::-1]
keep = []
while order.size > 0:
i = order[0]
keep.append(i)
xx1 = np.maximum(x1[i], x1[order[1:]])
yy1 = np.maximum(y1[i], y1[order[1:]])
xx2 = np.minimum(x2[i], x2[order[1:]])
yy2 = np.minimum(y2[i], y2[order[1:]])
w = np.maximum(0.0, xx2 - xx1 + 1)
h = np.maximum(0.0, yy2 - yy1 + 1)
inter = w * h
ovr = inter / (areas[i] + areas[order[1:]] - inter)
inds = np.where(ovr <= thresh)[0]
order = order[inds + 1]
return keep
def decode(loc, priors, variances):
"""Decode locations from predictions using priors to undo
the encoding we did for offset regression at train time.
Args:
loc (tensor): location predictions for loc layers,
Shape: [num_priors,4]
priors (tensor): Prior boxes in center-offset form.
Shape: [num_priors,4].
variances: (list[float]) Variances of priorboxes
Return:
decoded bounding box predictions
"""
boxes = torch.cat(
(
priors[:, :2] + loc[:, :2] * variances[0] * priors[:, 2:],
priors[:, 2:] * torch.exp(loc[:, 2:] * variances[1]),
),
1,
)
boxes[:, :2] -= boxes[:, 2:] / 2
boxes[:, 2:] += boxes[:, :2]
return boxes
def decode_landm(pre, priors, variances):
"""Decode landm from predictions using priors to undo
the encoding we did for offset regression at train time.
Args:
pre (tensor): landm predictions for loc layers,
Shape: [num_priors,10]
priors (tensor): Prior boxes in center-offset form.
Shape: [num_priors,4].
variances: (list[float]) Variances of priorboxes
Return:
decoded landm predictions
"""
landms = torch.cat(
(
priors[:, :2] + pre[:, :2] * variances[0] * priors[:, 2:],
priors[:, :2] + pre[:, 2:4] * variances[0] * priors[:, 2:],
priors[:, :2] + pre[:, 4:6] * variances[0] * priors[:, 2:],
priors[:, :2] + pre[:, 6:8] * variances[0] * priors[:, 2:],
priors[:, :2] + pre[:, 8:10] * variances[0] * priors[:, 2:],
),
dim=1,
)
return landms
def pad_image(image, h, w, size, padvalue):
pad_image = image.copy()
pad_h = max(size[0] - h, 0)
pad_w = max(size[1] - w, 0)
if pad_h > 0 or pad_w > 0:
pad_image = cv2.copyMakeBorder(image, 0, pad_h, 0,
pad_w, cv2.BORDER_CONSTANT,
value=padvalue)
return pad_image
def resize_image(image, re_size, keep_ratio=True):
"""Resize image
Args:
image: origin image
re_size: resize scale
keep_ratio: keep aspect ratio. Default is set to true.
Returns:
re_image: resized image
resize_ratio: resize ratio
"""
if not keep_ratio:
re_image = cv2.resize(image, (re_size[0], re_size[1])).astype('float32')
return re_image, 0, 0
ratio = re_size[0] * 1.0 / re_size[1]
h, w = image.shape[0:2]
if h * 1.0 / w <= ratio:
resize_ratio = re_size[1] * 1.0 / w
re_h, re_w = int(h * resize_ratio), re_size[1]
else:
resize_ratio = re_size[0] * 1.0 / h
re_h, re_w = re_size[0], int(w * resize_ratio)
re_image = cv2.resize(image, (re_w, re_h)).astype('float32')
re_image = pad_image(re_image, re_h, re_w, re_size, (0.0, 0.0, 0.0))
return re_image, resize_ratio
def preprocess(img_raw, input_size, device):
"""preprocess
Args:
img_raw: origin image
Returns:
img: resized image
scale: resized image scale
resize: resize ratio
"""
img = np.float32(img_raw)
# resize image
img, resize = resize_image(img, input_size)
scale = torch.Tensor([img.shape[1], img.shape[0], img.shape[1], img.shape[0]])
img -= (104, 117, 123)
img = img.transpose(2, 0, 1)
img = torch.from_numpy(img).unsqueeze(0)
img = img.numpy()
scale = scale.to(device)
return img, scale, resize
def postprocess(cfg, img, outputs, scale, resize, confidence_threshold, nms_threshold, device):
"""post_process
Args:
img: resized image
outputs: forward outputs
scale: resized image scale
resize: resize ratio
confidence_threshold: confidence threshold
nms_threshold: non-maximum suppression threshold
Returns:
detetcion results
"""
_, im_height, im_width, _= img.shape
loc = torch.from_numpy(outputs[0])
conf = torch.from_numpy(outputs[1])
landms = torch.from_numpy(outputs[2])
# softmax
conf = F.softmax(conf, dim=-1)
priorbox = PriorBox(cfg, image_size=(im_height, im_width))
priors = priorbox.forward()
priors = priors.to(device)
prior_data = priors.data
boxes = decode(loc.squeeze(0), prior_data, cfg["variance"])
boxes = boxes * scale / resize
boxes = boxes.cpu().numpy()
scores = conf.squeeze(0).data.cpu().numpy()[:, 1]
landms = decode_landm(landms.squeeze(0), prior_data, cfg["variance"])
scale1 = torch.Tensor(
[img.shape[2], img.shape[1], img.shape[2], img.shape[1], img.shape[2],
img.shape[1], img.shape[2], img.shape[1], img.shape[2], img.shape[1],]
)
scale1 = scale1.to(device)
landms = landms * scale1 / resize
landms = landms.cpu().numpy()
# ignore low scores
inds = np.where(scores > confidence_threshold)[0]
boxes = boxes[inds]
landms = landms[inds]
scores = scores[inds]
# keep top-K before NMS
order = scores.argsort()[::-1]
boxes = boxes[order]
landms = landms[order]
scores = scores[order]
# do NMS
dets = np.hstack((boxes, scores[:, np.newaxis])).astype(np.float32, copy=False)
keep = py_cpu_nms(dets, nms_threshold)
dets = dets[keep, :]
landms = landms[keep]
dets = np.concatenate((dets, landms), axis=1)
return dets