movenet / README.md
zhengrongzhang's picture
init model
21794d5
|
raw
history blame
2.48 kB
---
license: apache-2.0
datasets:
- detection-datasets/coco
language:
- en
metrics:
- accuracy
tags:
- RyzenAI
- pose estimation
---
# MoveNet
MoveNet is an ultra fast and accurate model that detects 17 keypoints of a body. It released in [movenet.pytorch](https://github.com/fire717/movenet.pytorch/blob/master/README.md?plain=1)
We develop a modified version that could be supported by [AMD Ryzen AI](https://ryzenai.docs.amd.com/).
## How to use
### Installation
Follow [Ryzen AI Installation](https://ryzenai.docs.amd.com/en/latest/inst.html) to prepare the environment for Ryzen AI.
Run the following script to install pre-requisites for this model.
```bash
pip install -r requirements.txt
```
### Data Preparation (optional: for accuracy evaluation)
1.Download COCO dataset2017 from https://cocodataset.org/. (You need train2017.zip, val2017.zip and annotations.)Unzip to `./data/` like this:
```
β”œβ”€β”€ data
β”œβ”€β”€ annotations (person_keypoints_train2017.json, person_keypoints_val2017.json, ...)
β”œβ”€β”€ train2017 (xx.jpg, xx.jpg,...)
└── val2017 (xx.jpg, xx.jpg,...)
```
2.Make data to our data format.
- Modify the path in line 282~287 in make_coco_data_17keypoints.py if needed
- run the code to pre-process the dataset
```
python make_coco_data_17keypoints.py
```
```
Our data format: JSON file
Keypoints order:['nose', 'left_eye', 'right_eye', 'left_ear', 'right_ear',
'left_shoulder', 'right_shoulder', 'left_elbow', 'right_elbow', 'left_wrist',
'right_wrist', 'left_hip', 'right_hip', 'left_knee', 'right_knee', 'left_ankle',
'right_ankle']
One item:
[{"img_name": "0.jpg",
"keypoints": [x0,y0,z0,x1,y1,z1,...],
#z: 0 for no label, 1 for labeled but invisible, 2 for labeled and visible
"center": [x,y],
"bbox":[x0,y0,x1,y1],
"other_centers": [[x0,y0],[x1,y1],...],
"other_keypoints": [[[x0,y0],[x1,y1],...],[[x0,y0],[x1,y1],...],...], #lenth = num_keypoints
},
...
]
```
### Test & Evaluation
- Modify the DATASET_PATH in eval_onnx.py if needed
- Test accuracy of the quantized model
```python
python eval_onnx.py --ipu --provider_config Path\To\vaip_config.json
```
### Performance
|Metric |Accuracy on IPU|
| :----: | :----: |
|accuracy | 79.745%|
## Citation
1.[model card](https://storage.googleapis.com/movenet/MoveNet.SinglePose%20Model%20Card.pdf)
2.[movenet.pytorch](https://github.com/fire717/movenet.pytorch/blob/master/README.md?plain=1)