amaye15 commited on
Commit
031c5c9
1 Parent(s): af40fa9

End of training

Browse files
Files changed (4) hide show
  1. README.md +109 -109
  2. model.safetensors +1 -1
  3. train.ipynb +0 -0
  4. training_args.bin +1 -1
README.md CHANGED
@@ -25,16 +25,16 @@ model-index:
25
  metrics:
26
  - name: Accuracy
27
  type: accuracy
28
- value: 0.9484936831875608
29
  - name: F1
30
  type: f1
31
- value: 0.9464457235032415
32
  - name: Precision
33
  type: precision
34
- value: 0.9502534318485973
35
  - name: Recall
36
  type: recall
37
- value: 0.9469033863851012
38
  ---
39
 
40
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -44,11 +44,11 @@ should probably proofread and complete it, then remove this comment. -->
44
 
45
  This model is a fine-tuned version of [microsoft/swinv2-base-patch4-window16-256](https://huggingface.co/microsoft/swinv2-base-patch4-window16-256) on the stanford-dogs dataset.
46
  It achieves the following results on the evaluation set:
47
- - Loss: 0.1743
48
- - Accuracy: 0.9485
49
- - F1: 0.9464
50
- - Precision: 0.9503
51
- - Recall: 0.9469
52
 
53
  ## Model description
54
 
@@ -81,106 +81,106 @@ The following hyperparameters were used during training:
81
 
82
  | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
83
  |:-------------:|:------:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|
84
- | 4.712 | 0.0777 | 10 | 4.5920 | 0.1033 | 0.0846 | 0.1028 | 0.1011 |
85
- | 4.5051 | 0.1553 | 20 | 4.2985 | 0.2631 | 0.2229 | 0.2568 | 0.2535 |
86
- | 4.1676 | 0.2330 | 30 | 3.8374 | 0.4380 | 0.3934 | 0.4734 | 0.4254 |
87
- | 3.5986 | 0.3107 | 40 | 2.9143 | 0.6271 | 0.5820 | 0.6714 | 0.6127 |
88
- | 2.8149 | 0.3883 | 50 | 2.0518 | 0.7745 | 0.7385 | 0.7921 | 0.7650 |
89
- | 2.0574 | 0.4660 | 60 | 1.2191 | 0.8630 | 0.8481 | 0.8709 | 0.8585 |
90
- | 1.4108 | 0.5437 | 70 | 0.7125 | 0.9145 | 0.9078 | 0.9159 | 0.9123 |
91
- | 1.0538 | 0.6214 | 80 | 0.4939 | 0.9223 | 0.9171 | 0.9307 | 0.9193 |
92
- | 0.8756 | 0.6990 | 90 | 0.3852 | 0.9257 | 0.9205 | 0.9361 | 0.9233 |
93
- | 0.7519 | 0.7767 | 100 | 0.3297 | 0.9342 | 0.9302 | 0.9390 | 0.9318 |
94
- | 0.7327 | 0.8544 | 110 | 0.2942 | 0.9354 | 0.9326 | 0.9399 | 0.9337 |
95
- | 0.6447 | 0.9320 | 120 | 0.2832 | 0.9293 | 0.9269 | 0.9345 | 0.9276 |
96
- | 0.615 | 1.0097 | 130 | 0.2618 | 0.9312 | 0.9273 | 0.9352 | 0.9301 |
97
- | 0.5928 | 1.0874 | 140 | 0.2479 | 0.9317 | 0.9273 | 0.9386 | 0.9304 |
98
- | 0.5164 | 1.1650 | 150 | 0.2401 | 0.9329 | 0.9300 | 0.9382 | 0.9327 |
99
- | 0.4811 | 1.2427 | 160 | 0.2321 | 0.9371 | 0.9326 | 0.9350 | 0.9351 |
100
- | 0.5485 | 1.3204 | 170 | 0.2211 | 0.9385 | 0.9341 | 0.9462 | 0.9364 |
101
- | 0.4664 | 1.3981 | 180 | 0.2127 | 0.9424 | 0.9381 | 0.9405 | 0.9405 |
102
- | 0.4439 | 1.4757 | 190 | 0.2039 | 0.9429 | 0.9408 | 0.9467 | 0.9413 |
103
- | 0.4653 | 1.5534 | 200 | 0.2124 | 0.9400 | 0.9353 | 0.9392 | 0.9378 |
104
- | 0.5121 | 1.6311 | 210 | 0.2104 | 0.9414 | 0.9375 | 0.9486 | 0.9396 |
105
- | 0.4008 | 1.7087 | 220 | 0.2063 | 0.9397 | 0.9382 | 0.9451 | 0.9390 |
106
- | 0.4514 | 1.7864 | 230 | 0.2017 | 0.9400 | 0.9353 | 0.9385 | 0.9377 |
107
- | 0.4232 | 1.8641 | 240 | 0.2072 | 0.9388 | 0.9366 | 0.9431 | 0.9376 |
108
- | 0.4724 | 1.9417 | 250 | 0.2065 | 0.9422 | 0.9399 | 0.9464 | 0.9419 |
109
- | 0.4266 | 2.0194 | 260 | 0.2027 | 0.9441 | 0.9412 | 0.9497 | 0.9427 |
110
- | 0.3225 | 2.0971 | 270 | 0.2019 | 0.9417 | 0.9392 | 0.9480 | 0.9416 |
111
- | 0.399 | 2.1748 | 280 | 0.1942 | 0.9466 | 0.9453 | 0.9502 | 0.9458 |
112
- | 0.3518 | 2.2524 | 290 | 0.1997 | 0.9453 | 0.9435 | 0.9494 | 0.9442 |
113
- | 0.3757 | 2.3301 | 300 | 0.2034 | 0.9444 | 0.9414 | 0.9504 | 0.9428 |
114
- | 0.382 | 2.4078 | 310 | 0.1936 | 0.9444 | 0.9418 | 0.9484 | 0.9428 |
115
- | 0.3897 | 2.4854 | 320 | 0.2055 | 0.9410 | 0.9378 | 0.9476 | 0.9394 |
116
- | 0.3513 | 2.5631 | 330 | 0.1923 | 0.9424 | 0.9403 | 0.9457 | 0.9412 |
117
- | 0.3876 | 2.6408 | 340 | 0.1935 | 0.9431 | 0.9408 | 0.9473 | 0.9412 |
118
- | 0.4209 | 2.7184 | 350 | 0.1844 | 0.9458 | 0.9442 | 0.9478 | 0.9444 |
119
- | 0.3817 | 2.7961 | 360 | 0.2011 | 0.9434 | 0.9419 | 0.9480 | 0.9416 |
120
- | 0.3371 | 2.8738 | 370 | 0.1997 | 0.9407 | 0.9372 | 0.9442 | 0.9387 |
121
- | 0.3857 | 2.9515 | 380 | 0.1851 | 0.9448 | 0.9429 | 0.9475 | 0.9431 |
122
- | 0.3816 | 3.0291 | 390 | 0.1900 | 0.9424 | 0.9387 | 0.9481 | 0.9403 |
123
- | 0.3622 | 3.1068 | 400 | 0.1899 | 0.9448 | 0.9419 | 0.9493 | 0.9428 |
124
- | 0.3147 | 3.1845 | 410 | 0.1919 | 0.9453 | 0.9415 | 0.9490 | 0.9435 |
125
- | 0.3406 | 3.2621 | 420 | 0.1922 | 0.9461 | 0.9436 | 0.9486 | 0.9442 |
126
- | 0.3635 | 3.3398 | 430 | 0.1902 | 0.9429 | 0.9398 | 0.9478 | 0.9410 |
127
- | 0.3367 | 3.4175 | 440 | 0.1943 | 0.9419 | 0.9380 | 0.9440 | 0.9398 |
128
- | 0.2997 | 3.4951 | 450 | 0.1920 | 0.9453 | 0.9425 | 0.9490 | 0.9435 |
129
- | 0.353 | 3.5728 | 460 | 0.1912 | 0.9453 | 0.9437 | 0.9480 | 0.9446 |
130
- | 0.3368 | 3.6505 | 470 | 0.1879 | 0.9448 | 0.9434 | 0.9478 | 0.9438 |
131
- | 0.284 | 3.7282 | 480 | 0.1937 | 0.9412 | 0.9395 | 0.9454 | 0.9400 |
132
- | 0.3367 | 3.8058 | 490 | 0.1896 | 0.9441 | 0.9420 | 0.9485 | 0.9437 |
133
- | 0.2955 | 3.8835 | 500 | 0.1851 | 0.9434 | 0.9421 | 0.9452 | 0.9416 |
134
- | 0.3257 | 3.9612 | 510 | 0.1873 | 0.9439 | 0.9410 | 0.9496 | 0.9419 |
135
- | 0.3486 | 4.0388 | 520 | 0.1855 | 0.9439 | 0.9425 | 0.9454 | 0.9426 |
136
- | 0.2714 | 4.1165 | 530 | 0.1868 | 0.9470 | 0.9452 | 0.9495 | 0.9455 |
137
- | 0.2686 | 4.1942 | 540 | 0.1812 | 0.9478 | 0.9463 | 0.9494 | 0.9461 |
138
- | 0.333 | 4.2718 | 550 | 0.1889 | 0.9444 | 0.9416 | 0.9483 | 0.9425 |
139
- | 0.3251 | 4.3495 | 560 | 0.1845 | 0.9446 | 0.9435 | 0.9457 | 0.9434 |
140
- | 0.2426 | 4.4272 | 570 | 0.1886 | 0.9453 | 0.9442 | 0.9475 | 0.9442 |
141
- | 0.2578 | 4.5049 | 580 | 0.1860 | 0.9485 | 0.9473 | 0.9511 | 0.9473 |
142
- | 0.2711 | 4.5825 | 590 | 0.1819 | 0.9470 | 0.9442 | 0.9521 | 0.9451 |
143
- | 0.2666 | 4.6602 | 600 | 0.1811 | 0.9458 | 0.9446 | 0.9472 | 0.9445 |
144
- | 0.2864 | 4.7379 | 610 | 0.1861 | 0.9451 | 0.9420 | 0.9478 | 0.9436 |
145
- | 0.299 | 4.8155 | 620 | 0.1841 | 0.9485 | 0.9470 | 0.9507 | 0.9472 |
146
- | 0.2947 | 4.8932 | 630 | 0.1841 | 0.9475 | 0.9445 | 0.9524 | 0.9456 |
147
- | 0.2883 | 4.9709 | 640 | 0.1848 | 0.9483 | 0.9462 | 0.9504 | 0.9468 |
148
- | 0.2496 | 5.0485 | 650 | 0.1887 | 0.9478 | 0.9461 | 0.9500 | 0.9466 |
149
- | 0.2336 | 5.1262 | 660 | 0.1880 | 0.9461 | 0.9436 | 0.9478 | 0.9443 |
150
- | 0.2621 | 5.2039 | 670 | 0.1848 | 0.9466 | 0.9446 | 0.9484 | 0.9452 |
151
- | 0.3041 | 5.2816 | 680 | 0.1860 | 0.9429 | 0.9414 | 0.9453 | 0.9414 |
152
- | 0.2511 | 5.3592 | 690 | 0.1847 | 0.9470 | 0.9451 | 0.9490 | 0.9456 |
153
- | 0.2343 | 5.4369 | 700 | 0.1844 | 0.9456 | 0.9441 | 0.9487 | 0.9449 |
154
- | 0.2829 | 5.5146 | 710 | 0.1802 | 0.9473 | 0.9459 | 0.9492 | 0.9462 |
155
- | 0.2944 | 5.5922 | 720 | 0.1807 | 0.9470 | 0.9442 | 0.9506 | 0.9453 |
156
- | 0.2629 | 5.6699 | 730 | 0.1805 | 0.9466 | 0.9439 | 0.9498 | 0.9449 |
157
- | 0.2891 | 5.7476 | 740 | 0.1807 | 0.9456 | 0.9435 | 0.9480 | 0.9438 |
158
- | 0.2668 | 5.8252 | 750 | 0.1813 | 0.9463 | 0.9434 | 0.9493 | 0.9444 |
159
- | 0.2564 | 5.9029 | 760 | 0.1834 | 0.9478 | 0.9447 | 0.9521 | 0.9458 |
160
- | 0.2547 | 5.9806 | 770 | 0.1813 | 0.9458 | 0.9433 | 0.9487 | 0.9439 |
161
- | 0.2535 | 6.0583 | 780 | 0.1789 | 0.9456 | 0.9433 | 0.9490 | 0.9438 |
162
- | 0.2424 | 6.1359 | 790 | 0.1793 | 0.9448 | 0.9428 | 0.9473 | 0.9430 |
163
- | 0.269 | 6.2136 | 800 | 0.1769 | 0.9470 | 0.9444 | 0.9497 | 0.9452 |
164
- | 0.2382 | 6.2913 | 810 | 0.1781 | 0.9480 | 0.9450 | 0.9522 | 0.9462 |
165
- | 0.2616 | 6.3689 | 820 | 0.1779 | 0.9463 | 0.9440 | 0.9480 | 0.9447 |
166
- | 0.2496 | 6.4466 | 830 | 0.1763 | 0.9485 | 0.9462 | 0.9509 | 0.9471 |
167
- | 0.2471 | 6.5243 | 840 | 0.1759 | 0.9485 | 0.9467 | 0.9508 | 0.9472 |
168
- | 0.2283 | 6.6019 | 850 | 0.1754 | 0.9480 | 0.9463 | 0.9497 | 0.9467 |
169
- | 0.2067 | 6.6796 | 860 | 0.1756 | 0.9487 | 0.9472 | 0.9503 | 0.9475 |
170
- | 0.2711 | 6.7573 | 870 | 0.1753 | 0.9495 | 0.9475 | 0.9511 | 0.9481 |
171
- | 0.2631 | 6.8350 | 880 | 0.1751 | 0.9490 | 0.9472 | 0.9505 | 0.9476 |
172
- | 0.2135 | 6.9126 | 890 | 0.1756 | 0.9483 | 0.9466 | 0.9498 | 0.9470 |
173
- | 0.2352 | 6.9903 | 900 | 0.1775 | 0.9480 | 0.9460 | 0.9499 | 0.9466 |
174
- | 0.2386 | 7.0680 | 910 | 0.1771 | 0.9480 | 0.9457 | 0.9503 | 0.9464 |
175
- | 0.2621 | 7.1456 | 920 | 0.1760 | 0.9490 | 0.9468 | 0.9512 | 0.9475 |
176
- | 0.2419 | 7.2233 | 930 | 0.1762 | 0.9490 | 0.9470 | 0.9510 | 0.9475 |
177
- | 0.2692 | 7.3010 | 940 | 0.1758 | 0.9483 | 0.9466 | 0.9500 | 0.9469 |
178
- | 0.2428 | 7.3786 | 950 | 0.1751 | 0.9483 | 0.9467 | 0.9498 | 0.9470 |
179
- | 0.2494 | 7.4563 | 960 | 0.1747 | 0.9492 | 0.9475 | 0.9508 | 0.9478 |
180
- | 0.2271 | 7.5340 | 970 | 0.1746 | 0.9487 | 0.9471 | 0.9502 | 0.9473 |
181
- | 0.2437 | 7.6117 | 980 | 0.1745 | 0.9490 | 0.9472 | 0.9506 | 0.9475 |
182
- | 0.2092 | 7.6893 | 990 | 0.1743 | 0.9485 | 0.9464 | 0.9503 | 0.9469 |
183
- | 0.2416 | 7.7670 | 1000 | 0.1743 | 0.9485 | 0.9464 | 0.9503 | 0.9469 |
184
 
185
 
186
  ### Framework versions
 
25
  metrics:
26
  - name: Accuracy
27
  type: accuracy
28
+ value: 0.9480077745383868
29
  - name: F1
30
  type: f1
31
+ value: 0.9459908448725385
32
  - name: Precision
33
  type: precision
34
+ value: 0.949860554097917
35
  - name: Recall
36
  type: recall
37
+ value: 0.9463076869851217
38
  ---
39
 
40
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
44
 
45
  This model is a fine-tuned version of [microsoft/swinv2-base-patch4-window16-256](https://huggingface.co/microsoft/swinv2-base-patch4-window16-256) on the stanford-dogs dataset.
46
  It achieves the following results on the evaluation set:
47
+ - Loss: 0.1854
48
+ - Accuracy: 0.9480
49
+ - F1: 0.9460
50
+ - Precision: 0.9499
51
+ - Recall: 0.9463
52
 
53
  ## Model description
54
 
 
81
 
82
  | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
83
  |:-------------:|:------:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|
84
+ | 4.7451 | 0.0777 | 10 | 4.6183 | 0.0717 | 0.0618 | 0.0669 | 0.0681 |
85
+ | 4.5204 | 0.1553 | 20 | 4.3242 | 0.2024 | 0.1493 | 0.1858 | 0.1827 |
86
+ | 4.2163 | 0.2330 | 30 | 3.8514 | 0.3817 | 0.3108 | 0.3755 | 0.3598 |
87
+ | 3.5996 | 0.3107 | 40 | 2.9936 | 0.6025 | 0.5397 | 0.5985 | 0.5852 |
88
+ | 2.7565 | 0.3883 | 50 | 1.8902 | 0.7738 | 0.7419 | 0.8002 | 0.7599 |
89
+ | 1.9695 | 0.4660 | 60 | 1.2027 | 0.8644 | 0.8512 | 0.8810 | 0.8585 |
90
+ | 1.4292 | 0.5437 | 70 | 0.8375 | 0.8902 | 0.8768 | 0.9034 | 0.8853 |
91
+ | 1.1191 | 0.6214 | 80 | 0.5400 | 0.9140 | 0.9085 | 0.9209 | 0.9114 |
92
+ | 0.9249 | 0.6990 | 90 | 0.4183 | 0.9193 | 0.9136 | 0.9284 | 0.9169 |
93
+ | 0.7701 | 0.7767 | 100 | 0.3423 | 0.9237 | 0.9167 | 0.9265 | 0.9207 |
94
+ | 0.7036 | 0.8544 | 110 | 0.3141 | 0.9259 | 0.9199 | 0.9270 | 0.9228 |
95
+ | 0.7279 | 0.9320 | 120 | 0.2814 | 0.9261 | 0.9200 | 0.9301 | 0.9235 |
96
+ | 0.6732 | 1.0097 | 130 | 0.2583 | 0.9278 | 0.9258 | 0.9337 | 0.9264 |
97
+ | 0.5251 | 1.0874 | 140 | 0.2433 | 0.9388 | 0.9343 | 0.9400 | 0.9365 |
98
+ | 0.506 | 1.1650 | 150 | 0.2486 | 0.9293 | 0.9237 | 0.9393 | 0.9284 |
99
+ | 0.4941 | 1.2427 | 160 | 0.2489 | 0.9295 | 0.9276 | 0.9340 | 0.9276 |
100
+ | 0.493 | 1.3204 | 170 | 0.2256 | 0.9361 | 0.9337 | 0.9402 | 0.9344 |
101
+ | 0.4975 | 1.3981 | 180 | 0.2236 | 0.9390 | 0.9352 | 0.9430 | 0.9377 |
102
+ | 0.4742 | 1.4757 | 190 | 0.2291 | 0.9390 | 0.9349 | 0.9443 | 0.9368 |
103
+ | 0.4788 | 1.5534 | 200 | 0.2187 | 0.9385 | 0.9348 | 0.9429 | 0.9359 |
104
+ | 0.4817 | 1.6311 | 210 | 0.2194 | 0.9383 | 0.9366 | 0.9438 | 0.9370 |
105
+ | 0.425 | 1.7087 | 220 | 0.2145 | 0.9395 | 0.9365 | 0.9419 | 0.9374 |
106
+ | 0.4392 | 1.7864 | 230 | 0.2106 | 0.9405 | 0.9367 | 0.9473 | 0.9390 |
107
+ | 0.4295 | 1.8641 | 240 | 0.2031 | 0.9427 | 0.9415 | 0.9461 | 0.9419 |
108
+ | 0.447 | 1.9417 | 250 | 0.2073 | 0.9373 | 0.9341 | 0.9406 | 0.9355 |
109
+ | 0.4718 | 2.0194 | 260 | 0.2073 | 0.9417 | 0.9398 | 0.9436 | 0.9396 |
110
+ | 0.4528 | 2.0971 | 270 | 0.2011 | 0.9427 | 0.9403 | 0.9447 | 0.9401 |
111
+ | 0.3958 | 2.1748 | 280 | 0.1979 | 0.9439 | 0.9402 | 0.9467 | 0.9418 |
112
+ | 0.4325 | 2.2524 | 290 | 0.1993 | 0.9422 | 0.9396 | 0.9448 | 0.9404 |
113
+ | 0.3228 | 2.3301 | 300 | 0.2025 | 0.9397 | 0.9372 | 0.9415 | 0.9375 |
114
+ | 0.383 | 2.4078 | 310 | 0.2032 | 0.9424 | 0.9396 | 0.9471 | 0.9407 |
115
+ | 0.4147 | 2.4854 | 320 | 0.1975 | 0.9434 | 0.9401 | 0.9466 | 0.9418 |
116
+ | 0.3587 | 2.5631 | 330 | 0.2048 | 0.9429 | 0.9412 | 0.9453 | 0.9415 |
117
+ | 0.3481 | 2.6408 | 340 | 0.2110 | 0.9417 | 0.9409 | 0.9453 | 0.9414 |
118
+ | 0.4007 | 2.7184 | 350 | 0.1945 | 0.9448 | 0.9415 | 0.9470 | 0.9429 |
119
+ | 0.3719 | 2.7961 | 360 | 0.2025 | 0.9414 | 0.9404 | 0.9447 | 0.9408 |
120
+ | 0.3993 | 2.8738 | 370 | 0.2012 | 0.9448 | 0.9419 | 0.9485 | 0.9430 |
121
+ | 0.3745 | 2.9515 | 380 | 0.1924 | 0.9451 | 0.9415 | 0.9499 | 0.9435 |
122
+ | 0.3638 | 3.0291 | 390 | 0.1940 | 0.9444 | 0.9424 | 0.9478 | 0.9424 |
123
+ | 0.3421 | 3.1068 | 400 | 0.1897 | 0.9466 | 0.9441 | 0.9496 | 0.9446 |
124
+ | 0.2906 | 3.1845 | 410 | 0.1893 | 0.9470 | 0.9457 | 0.9494 | 0.9457 |
125
+ | 0.3455 | 3.2621 | 420 | 0.1802 | 0.9485 | 0.9471 | 0.9499 | 0.9475 |
126
+ | 0.3338 | 3.3398 | 430 | 0.1926 | 0.9441 | 0.9414 | 0.9473 | 0.9424 |
127
+ | 0.3307 | 3.4175 | 440 | 0.2020 | 0.9419 | 0.9407 | 0.9447 | 0.9409 |
128
+ | 0.367 | 3.4951 | 450 | 0.1934 | 0.9466 | 0.9452 | 0.9487 | 0.9454 |
129
+ | 0.3248 | 3.5728 | 460 | 0.2004 | 0.9419 | 0.9393 | 0.9443 | 0.9401 |
130
+ | 0.3366 | 3.6505 | 470 | 0.1924 | 0.9431 | 0.9410 | 0.9467 | 0.9415 |
131
+ | 0.3342 | 3.7282 | 480 | 0.1938 | 0.9453 | 0.9436 | 0.9468 | 0.9438 |
132
+ | 0.3386 | 3.8058 | 490 | 0.2018 | 0.9444 | 0.9428 | 0.9469 | 0.9430 |
133
+ | 0.3841 | 3.8835 | 500 | 0.1933 | 0.9434 | 0.9414 | 0.9458 | 0.9418 |
134
+ | 0.3174 | 3.9612 | 510 | 0.1902 | 0.9453 | 0.9438 | 0.9466 | 0.9436 |
135
+ | 0.2996 | 4.0388 | 520 | 0.1888 | 0.9466 | 0.9454 | 0.9497 | 0.9460 |
136
+ | 0.2879 | 4.1165 | 530 | 0.1885 | 0.9441 | 0.9428 | 0.9464 | 0.9428 |
137
+ | 0.3035 | 4.1942 | 540 | 0.1909 | 0.9453 | 0.9434 | 0.9475 | 0.9437 |
138
+ | 0.2574 | 4.2718 | 550 | 0.1886 | 0.9453 | 0.9427 | 0.9476 | 0.9438 |
139
+ | 0.3219 | 4.3495 | 560 | 0.1889 | 0.9434 | 0.9411 | 0.9462 | 0.9417 |
140
+ | 0.2827 | 4.4272 | 570 | 0.1896 | 0.9448 | 0.9435 | 0.9464 | 0.9434 |
141
+ | 0.2869 | 4.5049 | 580 | 0.1946 | 0.9444 | 0.9430 | 0.9459 | 0.9427 |
142
+ | 0.3442 | 4.5825 | 590 | 0.1871 | 0.9458 | 0.9444 | 0.9477 | 0.9445 |
143
+ | 0.2739 | 4.6602 | 600 | 0.1881 | 0.9441 | 0.9415 | 0.9470 | 0.9421 |
144
+ | 0.3067 | 4.7379 | 610 | 0.1925 | 0.9475 | 0.9456 | 0.9499 | 0.9456 |
145
+ | 0.2674 | 4.8155 | 620 | 0.1919 | 0.9429 | 0.9405 | 0.9458 | 0.9408 |
146
+ | 0.3029 | 4.8932 | 630 | 0.1870 | 0.9446 | 0.9420 | 0.9468 | 0.9425 |
147
+ | 0.293 | 4.9709 | 640 | 0.1914 | 0.9422 | 0.9398 | 0.9444 | 0.9402 |
148
+ | 0.3242 | 5.0485 | 650 | 0.1906 | 0.9444 | 0.9428 | 0.9463 | 0.9429 |
149
+ | 0.3302 | 5.1262 | 660 | 0.1893 | 0.9453 | 0.9437 | 0.9467 | 0.9439 |
150
+ | 0.2754 | 5.2039 | 670 | 0.1859 | 0.9470 | 0.9452 | 0.9489 | 0.9453 |
151
+ | 0.2794 | 5.2816 | 680 | 0.1876 | 0.9458 | 0.9441 | 0.9473 | 0.9442 |
152
+ | 0.3015 | 5.3592 | 690 | 0.1870 | 0.9463 | 0.9450 | 0.9481 | 0.9451 |
153
+ | 0.2741 | 5.4369 | 700 | 0.1891 | 0.9427 | 0.9415 | 0.9447 | 0.9414 |
154
+ | 0.2856 | 5.5146 | 710 | 0.1898 | 0.9456 | 0.9439 | 0.9470 | 0.9439 |
155
+ | 0.2869 | 5.5922 | 720 | 0.1900 | 0.9463 | 0.9449 | 0.9485 | 0.9448 |
156
+ | 0.2874 | 5.6699 | 730 | 0.1926 | 0.9458 | 0.9434 | 0.9489 | 0.9439 |
157
+ | 0.1988 | 5.7476 | 740 | 0.1883 | 0.9453 | 0.9427 | 0.9469 | 0.9433 |
158
+ | 0.2644 | 5.8252 | 750 | 0.1895 | 0.9473 | 0.9448 | 0.9494 | 0.9455 |
159
+ | 0.2641 | 5.9029 | 760 | 0.1931 | 0.9439 | 0.9414 | 0.9466 | 0.9421 |
160
+ | 0.2391 | 5.9806 | 770 | 0.1925 | 0.9439 | 0.9414 | 0.9460 | 0.9421 |
161
+ | 0.2601 | 6.0583 | 780 | 0.1922 | 0.9466 | 0.9446 | 0.9485 | 0.9450 |
162
+ | 0.2499 | 6.1359 | 790 | 0.1921 | 0.9461 | 0.9443 | 0.9480 | 0.9443 |
163
+ | 0.264 | 6.2136 | 800 | 0.1877 | 0.9466 | 0.9450 | 0.9479 | 0.9451 |
164
+ | 0.2523 | 6.2913 | 810 | 0.1875 | 0.9468 | 0.9453 | 0.9483 | 0.9455 |
165
+ | 0.2406 | 6.3689 | 820 | 0.1880 | 0.9495 | 0.9477 | 0.9516 | 0.9481 |
166
+ | 0.2749 | 6.4466 | 830 | 0.1885 | 0.9466 | 0.9448 | 0.9483 | 0.9451 |
167
+ | 0.2702 | 6.5243 | 840 | 0.1885 | 0.9468 | 0.9451 | 0.9482 | 0.9455 |
168
+ | 0.2482 | 6.6019 | 850 | 0.1863 | 0.9475 | 0.9461 | 0.9493 | 0.9464 |
169
+ | 0.2403 | 6.6796 | 860 | 0.1897 | 0.9470 | 0.9451 | 0.9497 | 0.9453 |
170
+ | 0.2509 | 6.7573 | 870 | 0.1906 | 0.9483 | 0.9462 | 0.9508 | 0.9465 |
171
+ | 0.2689 | 6.8350 | 880 | 0.1867 | 0.9485 | 0.9459 | 0.9506 | 0.9466 |
172
+ | 0.2159 | 6.9126 | 890 | 0.1866 | 0.9485 | 0.9464 | 0.9504 | 0.9468 |
173
+ | 0.2488 | 6.9903 | 900 | 0.1866 | 0.9461 | 0.9435 | 0.9482 | 0.9443 |
174
+ | 0.2366 | 7.0680 | 910 | 0.1871 | 0.9448 | 0.9422 | 0.9464 | 0.9430 |
175
+ | 0.2602 | 7.1456 | 920 | 0.1854 | 0.9466 | 0.9441 | 0.9483 | 0.9447 |
176
+ | 0.2236 | 7.2233 | 930 | 0.1859 | 0.9453 | 0.9429 | 0.9467 | 0.9436 |
177
+ | 0.2463 | 7.3010 | 940 | 0.1863 | 0.9470 | 0.9450 | 0.9488 | 0.9454 |
178
+ | 0.2355 | 7.3786 | 950 | 0.1862 | 0.9461 | 0.9437 | 0.9476 | 0.9443 |
179
+ | 0.263 | 7.4563 | 960 | 0.1860 | 0.9473 | 0.9453 | 0.9491 | 0.9456 |
180
+ | 0.2384 | 7.5340 | 970 | 0.1860 | 0.9473 | 0.9453 | 0.9492 | 0.9456 |
181
+ | 0.2229 | 7.6117 | 980 | 0.1856 | 0.9478 | 0.9458 | 0.9497 | 0.9461 |
182
+ | 0.2277 | 7.6893 | 990 | 0.1855 | 0.9480 | 0.9460 | 0.9499 | 0.9463 |
183
+ | 0.2485 | 7.7670 | 1000 | 0.1854 | 0.9480 | 0.9460 | 0.9499 | 0.9463 |
184
 
185
 
186
  ### Framework versions
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:260a2176773e1b5330af6199002639e5cb5e84a9f947ac6ad93e828f2475cbfe
3
  size 348129336
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e8eeddefca678af6171d42cb96ec7452c1174ea2f7091454954995a511dc1778
3
  size 348129336
train.ipynb CHANGED
The diff for this file is too large to render. See raw diff
 
training_args.bin CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:af012b2a9d907700845dcff25b6d43cf16e5d2f2dd0cc24fa3818474ab0dc9cf
3
  size 5112
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f6c9e577750d5c219c2245c01bde0e5225707ea81695238ad3d6481b76006279
3
  size 5112