Update modeling_aimv2.py
Browse files- modeling_aimv2.py +62 -1
modeling_aimv2.py
CHANGED
@@ -222,7 +222,7 @@ class AIMv2Model(AIMv2PretrainedModel):
|
|
222 |
hidden_states=hidden_states,
|
223 |
)
|
224 |
|
225 |
-
|
226 |
class AIMv2ForImageClassification(AIMv2PretrainedModel):
|
227 |
def __init__(self, config: AIMv2Config):
|
228 |
super().__init__(config)
|
@@ -306,3 +306,64 @@ class AIMv2ForImageClassification(AIMv2PretrainedModel):
|
|
306 |
hidden_states=outputs.hidden_states,
|
307 |
# attentions=outputs.attentions,
|
308 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
222 |
hidden_states=hidden_states,
|
223 |
)
|
224 |
|
225 |
+
'''
|
226 |
class AIMv2ForImageClassification(AIMv2PretrainedModel):
|
227 |
def __init__(self, config: AIMv2Config):
|
228 |
super().__init__(config)
|
|
|
306 |
hidden_states=outputs.hidden_states,
|
307 |
# attentions=outputs.attentions,
|
308 |
)
|
309 |
+
'''
|
310 |
+
|
311 |
+
|
312 |
+
class AIMv2ForImageClassification(AIMv2PretrainedModel):
|
313 |
+
def __init__(self, config: AIMv2Config):
|
314 |
+
super().__init__(config)
|
315 |
+
|
316 |
+
self.num_labels = config.num_labels
|
317 |
+
self.aimv2 = AIMv2Model(config)
|
318 |
+
|
319 |
+
# Classifier head
|
320 |
+
self.classifier = (
|
321 |
+
nn.Linear(config.hidden_size, config.num_labels)
|
322 |
+
if config.num_labels > 0
|
323 |
+
else nn.Identity()
|
324 |
+
)
|
325 |
+
|
326 |
+
# Initialize weights and apply final processing
|
327 |
+
self.post_init()
|
328 |
+
|
329 |
+
def forward(
|
330 |
+
self,
|
331 |
+
pixel_values: Optional[torch.Tensor] = None,
|
332 |
+
head_mask: Optional[torch.Tensor] = None,
|
333 |
+
labels: Optional[torch.Tensor] = None,
|
334 |
+
output_hidden_states: Optional[bool] = None,
|
335 |
+
return_dict: Optional[bool] = None,
|
336 |
+
) -> Union[tuple, ImageClassifierOutput]:
|
337 |
+
|
338 |
+
return_dict = (
|
339 |
+
return_dict if return_dict is not None else self.config.use_return_dict
|
340 |
+
)
|
341 |
+
|
342 |
+
outputs = self.aimv2(
|
343 |
+
pixel_values,
|
344 |
+
mask=head_mask,
|
345 |
+
output_hidden_states=output_hidden_states,
|
346 |
+
return_dict=return_dict,
|
347 |
+
)
|
348 |
+
|
349 |
+
sequence_output = outputs[0]
|
350 |
+
|
351 |
+
logits = self.classifier(sequence_output[:, 0, :])
|
352 |
+
|
353 |
+
loss = None
|
354 |
+
if labels is not None:
|
355 |
+
labels = labels.to(logits.device)
|
356 |
+
|
357 |
+
# Always use cross-entropy loss
|
358 |
+
loss_fct = CrossEntropyLoss()
|
359 |
+
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
360 |
+
|
361 |
+
if not return_dict:
|
362 |
+
output = (logits,) + outputs[1:]
|
363 |
+
return ((loss,) + output) if loss is not None else output
|
364 |
+
|
365 |
+
return ImageClassifierOutput(
|
366 |
+
loss=loss,
|
367 |
+
logits=logits,
|
368 |
+
hidden_states=outputs.hidden_states,
|
369 |
+
)
|