Update modeling_aimv2.py
Browse files- modeling_aimv2.py +21 -0
modeling_aimv2.py
CHANGED
@@ -315,10 +315,14 @@ class AIMv2ForImageClassification(AIMv2PretrainedModel):
|
|
315 |
|
316 |
class AIMv2ForImageClassification(AIMv2PretrainedModel):
|
317 |
def __init__(self, config: AIMv2Config):
|
|
|
318 |
super().__init__(config)
|
319 |
|
320 |
self.num_labels = config.num_labels
|
|
|
|
|
321 |
self.aimv2 = AIMv2Model(config)
|
|
|
322 |
|
323 |
# Classifier head
|
324 |
self.classifier = (
|
@@ -326,9 +330,11 @@ class AIMv2ForImageClassification(AIMv2PretrainedModel):
|
|
326 |
if config.num_labels > 0
|
327 |
else nn.Identity()
|
328 |
)
|
|
|
329 |
|
330 |
# Initialize weights and apply final processing
|
331 |
self.post_init()
|
|
|
332 |
|
333 |
def forward(
|
334 |
self,
|
@@ -338,33 +344,48 @@ class AIMv2ForImageClassification(AIMv2PretrainedModel):
|
|
338 |
output_hidden_states: Optional[bool] = None,
|
339 |
return_dict: Optional[bool] = None,
|
340 |
) -> Union[tuple, ImageClassifierOutput]:
|
|
|
341 |
|
342 |
return_dict = (
|
343 |
return_dict if return_dict is not None else self.config.use_return_dict
|
344 |
)
|
|
|
345 |
|
346 |
# Call base model
|
|
|
347 |
outputs = self.aimv2(
|
348 |
pixel_values,
|
349 |
mask=head_mask,
|
350 |
output_hidden_states=output_hidden_states,
|
351 |
return_dict=return_dict,
|
352 |
)
|
|
|
|
|
353 |
sequence_output = outputs[0]
|
|
|
|
|
354 |
# Classifier head
|
355 |
logits = self.classifier(sequence_output[:, 0, :])
|
|
|
356 |
|
357 |
loss = None
|
358 |
if labels is not None:
|
|
|
|
|
359 |
labels = labels.to(logits.device)
|
|
|
|
|
360 |
# Always use cross-entropy loss
|
361 |
loss_fct = CrossEntropyLoss()
|
362 |
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
|
|
363 |
|
364 |
if not return_dict:
|
365 |
output = (logits,) + outputs[1:]
|
|
|
366 |
return ((loss,) + output) if loss is not None else output
|
367 |
|
|
|
368 |
return ImageClassifierOutput(
|
369 |
loss=loss,
|
370 |
logits=logits,
|
|
|
315 |
|
316 |
class AIMv2ForImageClassification(AIMv2PretrainedModel):
|
317 |
def __init__(self, config: AIMv2Config):
|
318 |
+
print("Initializing AIMv2ForImageClassification")
|
319 |
super().__init__(config)
|
320 |
|
321 |
self.num_labels = config.num_labels
|
322 |
+
print(f"Number of labels: {self.num_labels}")
|
323 |
+
|
324 |
self.aimv2 = AIMv2Model(config)
|
325 |
+
print("Initialized AIMv2 base model")
|
326 |
|
327 |
# Classifier head
|
328 |
self.classifier = (
|
|
|
330 |
if config.num_labels > 0
|
331 |
else nn.Identity()
|
332 |
)
|
333 |
+
print(f"Initialized classifier: {self.classifier}")
|
334 |
|
335 |
# Initialize weights and apply final processing
|
336 |
self.post_init()
|
337 |
+
print("Weights initialized and final processing applied")
|
338 |
|
339 |
def forward(
|
340 |
self,
|
|
|
344 |
output_hidden_states: Optional[bool] = None,
|
345 |
return_dict: Optional[bool] = None,
|
346 |
) -> Union[tuple, ImageClassifierOutput]:
|
347 |
+
print("Forward pass started")
|
348 |
|
349 |
return_dict = (
|
350 |
return_dict if return_dict is not None else self.config.use_return_dict
|
351 |
)
|
352 |
+
print(f"return_dict: {return_dict}")
|
353 |
|
354 |
# Call base model
|
355 |
+
print("Calling AIMv2 base model")
|
356 |
outputs = self.aimv2(
|
357 |
pixel_values,
|
358 |
mask=head_mask,
|
359 |
output_hidden_states=output_hidden_states,
|
360 |
return_dict=return_dict,
|
361 |
)
|
362 |
+
print(f"AIMv2 outputs received: {outputs}")
|
363 |
+
|
364 |
sequence_output = outputs[0]
|
365 |
+
print(f"Shape of sequence_output: {sequence_output.shape}")
|
366 |
+
|
367 |
# Classifier head
|
368 |
logits = self.classifier(sequence_output[:, 0, :])
|
369 |
+
print(f"Logits calculated: {logits.shape}")
|
370 |
|
371 |
loss = None
|
372 |
if labels is not None:
|
373 |
+
print(labels)
|
374 |
+
print(f"Labels provided: {labels.shape}")
|
375 |
labels = labels.to(logits.device)
|
376 |
+
print(f"Labels moved to device: {labels.device}")
|
377 |
+
|
378 |
# Always use cross-entropy loss
|
379 |
loss_fct = CrossEntropyLoss()
|
380 |
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
381 |
+
print(f"Loss calculated: {loss.item()}")
|
382 |
|
383 |
if not return_dict:
|
384 |
output = (logits,) + outputs[1:]
|
385 |
+
print("Output without return_dict")
|
386 |
return ((loss,) + output) if loss is not None else output
|
387 |
|
388 |
+
print("Returning ImageClassifierOutput")
|
389 |
return ImageClassifierOutput(
|
390 |
loss=loss,
|
391 |
logits=logits,
|