update model card README.md
Browse files
README.md
CHANGED
@@ -16,10 +16,10 @@ should probably proofread and complete it, then remove this comment. -->
|
|
16 |
|
17 |
This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on an unknown dataset.
|
18 |
It achieves the following results on the evaluation set:
|
19 |
-
- Train Accuracy: 0.
|
20 |
-
- Train Loss: 0.
|
21 |
-
- Accuracy: 0.
|
22 |
-
- Loss: 0.
|
23 |
|
24 |
## Model description
|
25 |
|
@@ -38,48 +38,60 @@ More information needed
|
|
38 |
### Training hyperparameters
|
39 |
|
40 |
The following hyperparameters were used during training:
|
41 |
-
- learning_rate: 0.
|
42 |
-
- train_batch_size:
|
43 |
-
- eval_batch_size:
|
44 |
- seed: 42
|
|
|
|
|
45 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
46 |
- lr_scheduler_type: linear
|
47 |
-
- num_epochs:
|
48 |
|
49 |
### Training results
|
50 |
|
51 |
-
| Training Loss | Epoch
|
52 |
-
|
53 |
-
| No log | 5.
|
54 |
-
| No log | 5.
|
55 |
-
| No log | 10.
|
56 |
-
| No log | 10.
|
57 |
-
| No log | 15.
|
58 |
-
| No log | 15.
|
59 |
-
| No log | 20.
|
60 |
-
| No log | 20.
|
61 |
-
| No log | 25.
|
62 |
-
| No log | 25.
|
63 |
-
| No log | 30.
|
64 |
-
| No log | 30.
|
65 |
-
| No log | 35.
|
66 |
-
| No log | 35.
|
67 |
-
| No log | 40.
|
68 |
-
| No log | 40.
|
69 |
-
| No log | 45.
|
70 |
-
| No log | 45.
|
71 |
-
| No log | 50.
|
72 |
-
| No log | 50.
|
73 |
-
| No log | 55.
|
74 |
-
| No log | 55.
|
75 |
-
| No log | 60.
|
76 |
-
| No log | 60.
|
77 |
-
| No log | 65.
|
78 |
-
| No log | 65.
|
79 |
-
| No log | 70.
|
80 |
-
| No log | 70.
|
81 |
-
| No log | 75.
|
82 |
-
| No log | 75.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
83 |
|
84 |
|
85 |
### Framework versions
|
|
|
16 |
|
17 |
This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on an unknown dataset.
|
18 |
It achieves the following results on the evaluation set:
|
19 |
+
- Train Accuracy: 0.9025
|
20 |
+
- Train Loss: 0.0125
|
21 |
+
- Accuracy: 0.9589
|
22 |
+
- Loss: 0.0175
|
23 |
|
24 |
## Model description
|
25 |
|
|
|
38 |
### Training hyperparameters
|
39 |
|
40 |
The following hyperparameters were used during training:
|
41 |
+
- learning_rate: 0.0001
|
42 |
+
- train_batch_size: 16
|
43 |
+
- eval_batch_size: 16
|
44 |
- seed: 42
|
45 |
+
- gradient_accumulation_steps: 2
|
46 |
+
- total_train_batch_size: 32
|
47 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
48 |
- lr_scheduler_type: linear
|
49 |
+
- num_epochs: 103
|
50 |
|
51 |
### Training results
|
52 |
|
53 |
+
| Training Loss | Epoch | Step | Accuracy | Loss | Validation Loss |
|
54 |
+
|:-------------:|:------:|:----:|:--------:|:------:|:---------------:|
|
55 |
+
| No log | 5.06 | 200 | 0.9114 | 0.0241 | 0.0172 |
|
56 |
+
| No log | 5.06 | 200 | 0.9114 | 0.0241 | 0.0172 |
|
57 |
+
| No log | 10.13 | 400 | 0.9335 | 0.0209 | 0.0157 |
|
58 |
+
| No log | 10.13 | 400 | 0.9335 | 0.0209 | 0.0157 |
|
59 |
+
| No log | 15.19 | 600 | 0.9241 | 0.0189 | 0.0172 |
|
60 |
+
| No log | 15.19 | 600 | 0.9241 | 0.0189 | 0.0172 |
|
61 |
+
| No log | 20.25 | 800 | 0.9430 | 0.0182 | 0.0161 |
|
62 |
+
| No log | 20.25 | 800 | 0.9430 | 0.0182 | 0.0161 |
|
63 |
+
| No log | 25.32 | 1000 | 0.9399 | 0.0165 | 0.0186 |
|
64 |
+
| No log | 25.32 | 1000 | 0.9399 | 0.0165 | 0.0186 |
|
65 |
+
| No log | 30.38 | 1200 | 0.9557 | 0.0155 | 0.0137 |
|
66 |
+
| No log | 30.38 | 1200 | 0.9557 | 0.0155 | 0.0137 |
|
67 |
+
| No log | 35.44 | 1400 | 0.9335 | 0.0136 | 0.0180 |
|
68 |
+
| No log | 35.44 | 1400 | 0.9335 | 0.0136 | 0.0180 |
|
69 |
+
| No log | 40.51 | 1600 | 0.9525 | 0.0152 | 0.0139 |
|
70 |
+
| No log | 40.51 | 1600 | 0.9525 | 0.0152 | 0.0139 |
|
71 |
+
| No log | 45.57 | 1800 | 0.9494 | 0.0144 | 0.0149 |
|
72 |
+
| No log | 45.57 | 1800 | 0.9494 | 0.0144 | 0.0149 |
|
73 |
+
| No log | 50.63 | 2000 | 0.9430 | 0.0153 | 0.0187 |
|
74 |
+
| No log | 50.63 | 2000 | 0.9430 | 0.0153 | 0.0187 |
|
75 |
+
| No log | 55.7 | 2200 | 0.9557 | 0.0132 | 0.0149 |
|
76 |
+
| No log | 55.7 | 2200 | 0.9557 | 0.0132 | 0.0149 |
|
77 |
+
| No log | 60.76 | 2400 | 0.9430 | 0.0124 | 0.0149 |
|
78 |
+
| No log | 60.76 | 2400 | 0.9430 | 0.0124 | 0.0149 |
|
79 |
+
| No log | 65.82 | 2600 | 0.9525 | 0.0134 | 0.0164 |
|
80 |
+
| No log | 65.82 | 2600 | 0.9525 | 0.0134 | 0.0164 |
|
81 |
+
| No log | 70.89 | 2800 | 0.9557 | 0.0117 | 0.0143 |
|
82 |
+
| No log | 70.89 | 2800 | 0.9557 | 0.0117 | 0.0143 |
|
83 |
+
| No log | 75.95 | 3000 | 0.9557 | 0.0112 | 0.0166 |
|
84 |
+
| No log | 75.95 | 3000 | 0.9557 | 0.0112 | 0.0166 |
|
85 |
+
| No log | 81.01 | 3200 | 0.9589 | 0.0118 | 0.0163 |
|
86 |
+
| No log | 81.01 | 3200 | 0.9589 | 0.0118 | 0.0163 |
|
87 |
+
| No log | 86.08 | 3400 | 0.9494 | 0.0106 | 0.0188 |
|
88 |
+
| No log | 86.08 | 3400 | 0.9494 | 0.0106 | 0.0188 |
|
89 |
+
| No log | 91.14 | 3600 | 0.9462 | 0.0121 | 0.0186 |
|
90 |
+
| No log | 91.14 | 3600 | 0.9462 | 0.0121 | 0.0186 |
|
91 |
+
| No log | 96.2 | 3800 | 0.9525 | 0.0129 | 0.0171 |
|
92 |
+
| No log | 96.2 | 3800 | 0.9525 | 0.0129 | 0.0171 |
|
93 |
+
| No log | 101.27 | 4000 | 0.9589 | 0.0125 | 0.0175 |
|
94 |
+
| No log | 101.27 | 4000 | 0.9589 | 0.0125 | 0.0175 |
|
95 |
|
96 |
|
97 |
### Framework versions
|