End of training
Browse files- README.md +74 -0
- all_results.json +28 -0
- classification_report.csv +9 -0
- classification_report.png +0 -0
- config.json +66 -0
- eval_results.json +13 -0
- evaluation/classification_report.csv +9 -0
- evaluation/clf_bar.png +0 -0
- evaluation/confusion_matrix.csv +6 -0
- evaluation/confusion_matrix.png +0 -0
- evaluation/results.log +14 -0
- model.safetensors +3 -0
- preprocessor_config.json +22 -0
- test_results.json +12 -0
- train_and_eval.png +0 -0
- train_results.json +8 -0
- trainer_state.json +176 -0
- training_args.bin +3 -0
- training_metrics.csv +6 -0
README.md
ADDED
@@ -0,0 +1,74 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: transformers
|
3 |
+
license: apache-2.0
|
4 |
+
base_model: microsoft/swin-base-patch4-window7-224
|
5 |
+
tags:
|
6 |
+
- generated_from_trainer
|
7 |
+
metrics:
|
8 |
+
- precision
|
9 |
+
- recall
|
10 |
+
- f1
|
11 |
+
- accuracy
|
12 |
+
model-index:
|
13 |
+
- name: 2025-01-21-15-57-43-swin-base-patch4-window7-224
|
14 |
+
results: []
|
15 |
+
---
|
16 |
+
|
17 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
18 |
+
should probably proofread and complete it, then remove this comment. -->
|
19 |
+
|
20 |
+
# 2025-01-21-15-57-43-swin-base-patch4-window7-224
|
21 |
+
|
22 |
+
This model is a fine-tuned version of [microsoft/swin-base-patch4-window7-224](https://huggingface.co/microsoft/swin-base-patch4-window7-224) on an unknown dataset.
|
23 |
+
It achieves the following results on the evaluation set:
|
24 |
+
- Loss: 0.0384
|
25 |
+
- Precision: 0.9928
|
26 |
+
- Recall: 0.9926
|
27 |
+
- F1: 0.9926
|
28 |
+
- Accuracy: 0.992
|
29 |
+
- Top1 Accuracy: 0.9926
|
30 |
+
- Error Rate: 0.0080
|
31 |
+
|
32 |
+
## Model description
|
33 |
+
|
34 |
+
More information needed
|
35 |
+
|
36 |
+
## Intended uses & limitations
|
37 |
+
|
38 |
+
More information needed
|
39 |
+
|
40 |
+
## Training and evaluation data
|
41 |
+
|
42 |
+
More information needed
|
43 |
+
|
44 |
+
## Training procedure
|
45 |
+
|
46 |
+
### Training hyperparameters
|
47 |
+
|
48 |
+
The following hyperparameters were used during training:
|
49 |
+
- learning_rate: 0.0002
|
50 |
+
- train_batch_size: 32
|
51 |
+
- eval_batch_size: 32
|
52 |
+
- seed: 3407
|
53 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
54 |
+
- lr_scheduler_type: linear
|
55 |
+
- lr_scheduler_warmup_ratio: 0.1
|
56 |
+
- num_epochs: 10
|
57 |
+
|
58 |
+
### Training results
|
59 |
+
|
60 |
+
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | Top1 Accuracy | Error Rate |
|
61 |
+
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|:-------------:|:----------:|
|
62 |
+
| 0.732 | 1.0 | 34 | 0.3980 | 0.9165 | 0.8741 | 0.8590 | 0.8649 | 0.8741 | 0.1351 |
|
63 |
+
| 0.2462 | 2.0 | 68 | 0.1051 | 0.9538 | 0.9481 | 0.9484 | 0.9499 | 0.9481 | 0.0501 |
|
64 |
+
| 0.1991 | 3.0 | 102 | 0.0384 | 0.9928 | 0.9926 | 0.9926 | 0.992 | 0.9926 | 0.0080 |
|
65 |
+
| 0.1559 | 4.0 | 136 | 0.0890 | 0.9802 | 0.9778 | 0.9780 | 0.9777 | 0.9778 | 0.0223 |
|
66 |
+
| 0.1024 | 5.0 | 170 | 0.1092 | 0.9863 | 0.9852 | 0.9852 | 0.9846 | 0.9852 | 0.0154 |
|
67 |
+
|
68 |
+
|
69 |
+
### Framework versions
|
70 |
+
|
71 |
+
- Transformers 4.45.2
|
72 |
+
- Pytorch 2.5.1+cu121
|
73 |
+
- Datasets 3.2.0
|
74 |
+
- Tokenizers 0.20.3
|
all_results.json
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"epoch": 5.0,
|
3 |
+
"eval_accuracy": 0.992,
|
4 |
+
"eval_error_rate": 0.008000000000000007,
|
5 |
+
"eval_f1": 0.9925797814417668,
|
6 |
+
"eval_loss": 0.03836945444345474,
|
7 |
+
"eval_precision": 0.9928395061728394,
|
8 |
+
"eval_recall": 0.9925925925925926,
|
9 |
+
"eval_runtime": 3.768,
|
10 |
+
"eval_samples_per_second": 35.828,
|
11 |
+
"eval_steps_per_second": 1.327,
|
12 |
+
"eval_top1_accuracy": 0.9925925925925926,
|
13 |
+
"test_accuracy": 1.0,
|
14 |
+
"test_error_rate": 0.0,
|
15 |
+
"test_f1": 1.0,
|
16 |
+
"test_loss": 0.03548692911863327,
|
17 |
+
"test_precision": 1.0,
|
18 |
+
"test_recall": 1.0,
|
19 |
+
"test_runtime": 3.845,
|
20 |
+
"test_samples_per_second": 35.111,
|
21 |
+
"test_steps_per_second": 1.3,
|
22 |
+
"test_top1_accuracy": 1.0,
|
23 |
+
"total_flos": 4.230809974960128e+17,
|
24 |
+
"train_loss": 0.2870972801657284,
|
25 |
+
"train_runtime": 294.683,
|
26 |
+
"train_samples_per_second": 36.65,
|
27 |
+
"train_steps_per_second": 1.154
|
28 |
+
}
|
classification_report.csv
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
,precision,recall,f1-score,support
|
2 |
+
Ilang-ilang,1.0,1.0,1.0,26.0
|
3 |
+
Mango,1.0,1.0,1.0,30.0
|
4 |
+
Narra,1.0,1.0,1.0,30.0
|
5 |
+
Royal Palm,1.0,1.0,1.0,24.0
|
6 |
+
Tabebuia,1.0,1.0,1.0,25.0
|
7 |
+
accuracy,1.0,1.0,1.0,1.0
|
8 |
+
macro avg,1.0,1.0,1.0,135.0
|
9 |
+
weighted avg,1.0,1.0,1.0,135.0
|
classification_report.png
ADDED
![]() |
config.json
ADDED
@@ -0,0 +1,66 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "microsoft/swin-base-patch4-window7-224",
|
3 |
+
"architectures": [
|
4 |
+
"SwinForImageClassification"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.0,
|
7 |
+
"depths": [
|
8 |
+
2,
|
9 |
+
2,
|
10 |
+
18,
|
11 |
+
2
|
12 |
+
],
|
13 |
+
"drop_path_rate": 0.1,
|
14 |
+
"embed_dim": 128,
|
15 |
+
"encoder_stride": 32,
|
16 |
+
"hidden_act": "gelu",
|
17 |
+
"hidden_dropout_prob": 0.0,
|
18 |
+
"hidden_size": 1024,
|
19 |
+
"id2label": {
|
20 |
+
"0": "Ilang-ilang",
|
21 |
+
"1": "Mango",
|
22 |
+
"2": "Narra",
|
23 |
+
"3": "Royal Palm",
|
24 |
+
"4": "Tabebuia"
|
25 |
+
},
|
26 |
+
"image_size": 224,
|
27 |
+
"initializer_range": 0.02,
|
28 |
+
"label2id": {
|
29 |
+
"Ilang-ilang": 0,
|
30 |
+
"Mango": 1,
|
31 |
+
"Narra": 2,
|
32 |
+
"Royal Palm": 3,
|
33 |
+
"Tabebuia": 4
|
34 |
+
},
|
35 |
+
"layer_norm_eps": 1e-05,
|
36 |
+
"mlp_ratio": 4.0,
|
37 |
+
"model_type": "swin",
|
38 |
+
"num_channels": 3,
|
39 |
+
"num_heads": [
|
40 |
+
4,
|
41 |
+
8,
|
42 |
+
16,
|
43 |
+
32
|
44 |
+
],
|
45 |
+
"num_layers": 4,
|
46 |
+
"out_features": [
|
47 |
+
"stage4"
|
48 |
+
],
|
49 |
+
"out_indices": [
|
50 |
+
4
|
51 |
+
],
|
52 |
+
"patch_size": 4,
|
53 |
+
"path_norm": true,
|
54 |
+
"qkv_bias": true,
|
55 |
+
"stage_names": [
|
56 |
+
"stem",
|
57 |
+
"stage1",
|
58 |
+
"stage2",
|
59 |
+
"stage3",
|
60 |
+
"stage4"
|
61 |
+
],
|
62 |
+
"torch_dtype": "float32",
|
63 |
+
"transformers_version": "4.45.2",
|
64 |
+
"use_absolute_embeddings": false,
|
65 |
+
"window_size": 7
|
66 |
+
}
|
eval_results.json
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"epoch": 5.0,
|
3 |
+
"eval_accuracy": 0.992,
|
4 |
+
"eval_error_rate": 0.008000000000000007,
|
5 |
+
"eval_f1": 0.9925797814417668,
|
6 |
+
"eval_loss": 0.03836945444345474,
|
7 |
+
"eval_precision": 0.9928395061728394,
|
8 |
+
"eval_recall": 0.9925925925925926,
|
9 |
+
"eval_runtime": 3.768,
|
10 |
+
"eval_samples_per_second": 35.828,
|
11 |
+
"eval_steps_per_second": 1.327,
|
12 |
+
"eval_top1_accuracy": 0.9925925925925926
|
13 |
+
}
|
evaluation/classification_report.csv
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
,precision,recall,f1-score,support
|
2 |
+
Ilang-ilang,1.0,1.0,1.0,26.0
|
3 |
+
Mango,1.0,1.0,1.0,30.0
|
4 |
+
Narra,1.0,1.0,1.0,30.0
|
5 |
+
Royal Palm,1.0,1.0,1.0,24.0
|
6 |
+
Tabebuia,1.0,1.0,1.0,25.0
|
7 |
+
accuracy,1.0,1.0,1.0,1.0
|
8 |
+
macro avg,1.0,1.0,1.0,135.0
|
9 |
+
weighted avg,1.0,1.0,1.0,135.0
|
evaluation/clf_bar.png
ADDED
![]() |
evaluation/confusion_matrix.csv
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
,Ilang-ilang,Mango,Narra,Royal Palm,Tabebuia
|
2 |
+
Ilang-ilang,26,0,0,0,0
|
3 |
+
Mango,0,30,0,0,0
|
4 |
+
Narra,0,0,30,0,0
|
5 |
+
Royal Palm,0,0,0,24,0
|
6 |
+
Tabebuia,0,0,0,0,25
|
evaluation/confusion_matrix.png
ADDED
![]() |
evaluation/results.log
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
2025-01-21 16:06:13,120 - INFO - plot_confusion_matrix - Confusion Matrix:
|
2 |
+
[[26 0 0 0 0]
|
3 |
+
[ 0 30 0 0 0]
|
4 |
+
[ 0 0 30 0 0]
|
5 |
+
[ 0 0 0 24 0]
|
6 |
+
[ 0 0 0 0 25]]
|
7 |
+
2025-01-21 16:06:13,664 - INFO - plot_confusion_matrix - Confusion matrix saved to 2025-01-21-15-57-43-swin-base-patch4-window7-224/evaluation/confusion_matrix.png
|
8 |
+
2025-01-21 16:06:13,668 - INFO - plot_confusion_matrix - Confusion matrix report saved to 2025-01-21-15-57-43-swin-base-patch4-window7-224/evaluation/confusion_matrix.csv
|
9 |
+
2025-01-21 16:06:13,841 - INFO - classification_report_bar - Classification report saved to 2025-01-21-15-57-43-swin-base-patch4-window7-224/evaluation/classification_report.csv
|
10 |
+
2025-01-21 16:06:14,595 - INFO - classification_report_bar - Classification report bar chart saved to 2025-01-21-15-57-43-swin-base-patch4-window7-224/evaluation/clf_bar.png
|
11 |
+
2025-01-21 16:06:14,597 - INFO - classification_report_bar - Overall Accuracy: 1.000
|
12 |
+
2025-01-21 16:06:15,423 - INFO - plot_classification_report_heatmap - Classification report heatmap saved to 2025-01-21-15-57-43-swin-base-patch4-window7-224/classification_report.png
|
13 |
+
2025-01-21 16:06:15,589 - INFO - plot_classification_report_heatmap - Classification report saved to 2025-01-21-15-57-43-swin-base-patch4-window7-224/classification_report.csv
|
14 |
+
2025-01-21 16:06:16,641 - INFO - plot_results - Training metrics saved to 2025-01-21-15-57-43-swin-base-patch4-window7-224/training_metrics.csv
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:dbe06c0cd821439a29705fba1d4d3f60c22b26e1a66e26f448deb3886e479683
|
3 |
+
size 347511116
|
preprocessor_config.json
ADDED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"do_normalize": true,
|
3 |
+
"do_rescale": true,
|
4 |
+
"do_resize": true,
|
5 |
+
"image_mean": [
|
6 |
+
0.485,
|
7 |
+
0.456,
|
8 |
+
0.406
|
9 |
+
],
|
10 |
+
"image_processor_type": "ViTImageProcessor",
|
11 |
+
"image_std": [
|
12 |
+
0.229,
|
13 |
+
0.224,
|
14 |
+
0.225
|
15 |
+
],
|
16 |
+
"resample": 3,
|
17 |
+
"rescale_factor": 0.00392156862745098,
|
18 |
+
"size": {
|
19 |
+
"height": 224,
|
20 |
+
"width": 224
|
21 |
+
}
|
22 |
+
}
|
test_results.json
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"test_accuracy": 1.0,
|
3 |
+
"test_error_rate": 0.0,
|
4 |
+
"test_f1": 1.0,
|
5 |
+
"test_loss": 0.03548692911863327,
|
6 |
+
"test_precision": 1.0,
|
7 |
+
"test_recall": 1.0,
|
8 |
+
"test_runtime": 3.845,
|
9 |
+
"test_samples_per_second": 35.111,
|
10 |
+
"test_steps_per_second": 1.3,
|
11 |
+
"test_top1_accuracy": 1.0
|
12 |
+
}
|
train_and_eval.png
ADDED
![]() |
train_results.json
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"epoch": 5.0,
|
3 |
+
"total_flos": 4.230809974960128e+17,
|
4 |
+
"train_loss": 0.2870972801657284,
|
5 |
+
"train_runtime": 294.683,
|
6 |
+
"train_samples_per_second": 36.65,
|
7 |
+
"train_steps_per_second": 1.154
|
8 |
+
}
|
trainer_state.json
ADDED
@@ -0,0 +1,176 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": 0.992,
|
3 |
+
"best_model_checkpoint": "2025-01-21-15-57-43-swin-base-patch4-window7-224/checkpoint-102",
|
4 |
+
"epoch": 5.0,
|
5 |
+
"eval_steps": 500,
|
6 |
+
"global_step": 170,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 1.0,
|
13 |
+
"train_accuracy": 0.7185185185185186
|
14 |
+
},
|
15 |
+
{
|
16 |
+
"epoch": 1.0,
|
17 |
+
"grad_norm": 23.64792823791504,
|
18 |
+
"learning_rate": 0.0002,
|
19 |
+
"loss": 0.732,
|
20 |
+
"step": 34
|
21 |
+
},
|
22 |
+
{
|
23 |
+
"epoch": 1.0,
|
24 |
+
"eval_accuracy": 0.864857142857143,
|
25 |
+
"eval_error_rate": 0.135142857142857,
|
26 |
+
"eval_f1": 0.8590001766472355,
|
27 |
+
"eval_loss": 0.3980206549167633,
|
28 |
+
"eval_precision": 0.9164785420340976,
|
29 |
+
"eval_recall": 0.8740740740740741,
|
30 |
+
"eval_runtime": 3.5078,
|
31 |
+
"eval_samples_per_second": 38.486,
|
32 |
+
"eval_steps_per_second": 1.425,
|
33 |
+
"eval_top1_accuracy": 0.8740740740740741,
|
34 |
+
"step": 34
|
35 |
+
},
|
36 |
+
{
|
37 |
+
"epoch": 2.0,
|
38 |
+
"train_accuracy": 0.9185185185185185
|
39 |
+
},
|
40 |
+
{
|
41 |
+
"epoch": 2.0,
|
42 |
+
"grad_norm": 8.839152336120605,
|
43 |
+
"learning_rate": 0.00017777777777777779,
|
44 |
+
"loss": 0.2462,
|
45 |
+
"step": 68
|
46 |
+
},
|
47 |
+
{
|
48 |
+
"epoch": 2.0,
|
49 |
+
"eval_accuracy": 0.9499066705963257,
|
50 |
+
"eval_error_rate": 0.05009332940367428,
|
51 |
+
"eval_f1": 0.948411944708241,
|
52 |
+
"eval_loss": 0.10511945188045502,
|
53 |
+
"eval_precision": 0.9538222952016054,
|
54 |
+
"eval_recall": 0.9481481481481482,
|
55 |
+
"eval_runtime": 3.5401,
|
56 |
+
"eval_samples_per_second": 38.135,
|
57 |
+
"eval_steps_per_second": 1.412,
|
58 |
+
"eval_top1_accuracy": 0.9481481481481482,
|
59 |
+
"step": 68
|
60 |
+
},
|
61 |
+
{
|
62 |
+
"epoch": 3.0,
|
63 |
+
"train_accuracy": 0.9349794238683128
|
64 |
+
},
|
65 |
+
{
|
66 |
+
"epoch": 3.0,
|
67 |
+
"grad_norm": 8.658217430114746,
|
68 |
+
"learning_rate": 0.00015555555555555556,
|
69 |
+
"loss": 0.1991,
|
70 |
+
"step": 102
|
71 |
+
},
|
72 |
+
{
|
73 |
+
"epoch": 3.0,
|
74 |
+
"eval_accuracy": 0.992,
|
75 |
+
"eval_error_rate": 0.008000000000000007,
|
76 |
+
"eval_f1": 0.9925797814417668,
|
77 |
+
"eval_loss": 0.03836945444345474,
|
78 |
+
"eval_precision": 0.9928395061728394,
|
79 |
+
"eval_recall": 0.9925925925925926,
|
80 |
+
"eval_runtime": 3.3904,
|
81 |
+
"eval_samples_per_second": 39.819,
|
82 |
+
"eval_steps_per_second": 1.475,
|
83 |
+
"eval_top1_accuracy": 0.9925925925925926,
|
84 |
+
"step": 102
|
85 |
+
},
|
86 |
+
{
|
87 |
+
"epoch": 4.0,
|
88 |
+
"train_accuracy": 0.9530864197530864
|
89 |
+
},
|
90 |
+
{
|
91 |
+
"epoch": 4.0,
|
92 |
+
"grad_norm": 7.14619779586792,
|
93 |
+
"learning_rate": 0.00013333333333333334,
|
94 |
+
"loss": 0.1559,
|
95 |
+
"step": 136
|
96 |
+
},
|
97 |
+
{
|
98 |
+
"epoch": 4.0,
|
99 |
+
"eval_accuracy": 0.9777188328912467,
|
100 |
+
"eval_error_rate": 0.022281167108753275,
|
101 |
+
"eval_f1": 0.9780454350411318,
|
102 |
+
"eval_loss": 0.08900710195302963,
|
103 |
+
"eval_precision": 0.98015873015873,
|
104 |
+
"eval_recall": 0.9777777777777777,
|
105 |
+
"eval_runtime": 3.432,
|
106 |
+
"eval_samples_per_second": 39.335,
|
107 |
+
"eval_steps_per_second": 1.457,
|
108 |
+
"eval_top1_accuracy": 0.9777777777777777,
|
109 |
+
"step": 136
|
110 |
+
},
|
111 |
+
{
|
112 |
+
"epoch": 5.0,
|
113 |
+
"train_accuracy": 0.9703703703703703
|
114 |
+
},
|
115 |
+
{
|
116 |
+
"epoch": 5.0,
|
117 |
+
"grad_norm": 5.705554008483887,
|
118 |
+
"learning_rate": 0.00011111111111111112,
|
119 |
+
"loss": 0.1024,
|
120 |
+
"step": 170
|
121 |
+
},
|
122 |
+
{
|
123 |
+
"epoch": 5.0,
|
124 |
+
"eval_accuracy": 0.9846153846153847,
|
125 |
+
"eval_error_rate": 0.01538461538461533,
|
126 |
+
"eval_f1": 0.9851737891737893,
|
127 |
+
"eval_loss": 0.10920833796262741,
|
128 |
+
"eval_precision": 0.9862825788751715,
|
129 |
+
"eval_recall": 0.9851851851851852,
|
130 |
+
"eval_runtime": 3.7553,
|
131 |
+
"eval_samples_per_second": 35.949,
|
132 |
+
"eval_steps_per_second": 1.331,
|
133 |
+
"eval_top1_accuracy": 0.9851851851851852,
|
134 |
+
"step": 170
|
135 |
+
},
|
136 |
+
{
|
137 |
+
"epoch": 5.0,
|
138 |
+
"step": 170,
|
139 |
+
"total_flos": 4.230809974960128e+17,
|
140 |
+
"train_loss": 0.2870972801657284,
|
141 |
+
"train_runtime": 294.683,
|
142 |
+
"train_samples_per_second": 36.65,
|
143 |
+
"train_steps_per_second": 1.154
|
144 |
+
}
|
145 |
+
],
|
146 |
+
"logging_steps": 1,
|
147 |
+
"max_steps": 340,
|
148 |
+
"num_input_tokens_seen": 0,
|
149 |
+
"num_train_epochs": 10,
|
150 |
+
"save_steps": 500,
|
151 |
+
"stateful_callbacks": {
|
152 |
+
"EarlyStoppingCallback": {
|
153 |
+
"args": {
|
154 |
+
"early_stopping_patience": 2,
|
155 |
+
"early_stopping_threshold": 0.0
|
156 |
+
},
|
157 |
+
"attributes": {
|
158 |
+
"early_stopping_patience_counter": 2
|
159 |
+
}
|
160 |
+
},
|
161 |
+
"TrainerControl": {
|
162 |
+
"args": {
|
163 |
+
"should_epoch_stop": false,
|
164 |
+
"should_evaluate": false,
|
165 |
+
"should_log": false,
|
166 |
+
"should_save": true,
|
167 |
+
"should_training_stop": true
|
168 |
+
},
|
169 |
+
"attributes": {}
|
170 |
+
}
|
171 |
+
},
|
172 |
+
"total_flos": 4.230809974960128e+17,
|
173 |
+
"train_batch_size": 32,
|
174 |
+
"trial_name": null,
|
175 |
+
"trial_params": null
|
176 |
+
}
|
training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a1a2887287c3d672c92c167523b2c6c3adf9289fb5fda4651f6df7ab84d3bf1c
|
3 |
+
size 5176
|
training_metrics.csv
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Epoch,Train Loss,Eval Loss,Train Accuracy,Eval Accuracy
|
2 |
+
1,0.732,0.3980206549167633,0.7185185185185186,0.864857142857143
|
3 |
+
2,0.2462,0.10511945188045502,0.9185185185185185,0.9499066705963257
|
4 |
+
3,0.1991,0.03836945444345474,0.9349794238683128,0.992
|
5 |
+
4,0.1559,0.08900710195302963,0.9530864197530864,0.9777188328912467
|
6 |
+
5,0.1024,0.10920833796262741,0.9703703703703703,0.9846153846153847
|