alyzbane commited on
Commit
9af7f93
·
verified ·
1 Parent(s): 8f55e25

End of training

Browse files
README.md ADDED
@@ -0,0 +1,74 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ license: apache-2.0
4
+ base_model: microsoft/swin-base-patch4-window7-224
5
+ tags:
6
+ - generated_from_trainer
7
+ metrics:
8
+ - precision
9
+ - recall
10
+ - f1
11
+ - accuracy
12
+ model-index:
13
+ - name: 2025-01-21-15-57-43-swin-base-patch4-window7-224
14
+ results: []
15
+ ---
16
+
17
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
18
+ should probably proofread and complete it, then remove this comment. -->
19
+
20
+ # 2025-01-21-15-57-43-swin-base-patch4-window7-224
21
+
22
+ This model is a fine-tuned version of [microsoft/swin-base-patch4-window7-224](https://huggingface.co/microsoft/swin-base-patch4-window7-224) on an unknown dataset.
23
+ It achieves the following results on the evaluation set:
24
+ - Loss: 0.0384
25
+ - Precision: 0.9928
26
+ - Recall: 0.9926
27
+ - F1: 0.9926
28
+ - Accuracy: 0.992
29
+ - Top1 Accuracy: 0.9926
30
+ - Error Rate: 0.0080
31
+
32
+ ## Model description
33
+
34
+ More information needed
35
+
36
+ ## Intended uses & limitations
37
+
38
+ More information needed
39
+
40
+ ## Training and evaluation data
41
+
42
+ More information needed
43
+
44
+ ## Training procedure
45
+
46
+ ### Training hyperparameters
47
+
48
+ The following hyperparameters were used during training:
49
+ - learning_rate: 0.0002
50
+ - train_batch_size: 32
51
+ - eval_batch_size: 32
52
+ - seed: 3407
53
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
54
+ - lr_scheduler_type: linear
55
+ - lr_scheduler_warmup_ratio: 0.1
56
+ - num_epochs: 10
57
+
58
+ ### Training results
59
+
60
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | Top1 Accuracy | Error Rate |
61
+ |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|:-------------:|:----------:|
62
+ | 0.732 | 1.0 | 34 | 0.3980 | 0.9165 | 0.8741 | 0.8590 | 0.8649 | 0.8741 | 0.1351 |
63
+ | 0.2462 | 2.0 | 68 | 0.1051 | 0.9538 | 0.9481 | 0.9484 | 0.9499 | 0.9481 | 0.0501 |
64
+ | 0.1991 | 3.0 | 102 | 0.0384 | 0.9928 | 0.9926 | 0.9926 | 0.992 | 0.9926 | 0.0080 |
65
+ | 0.1559 | 4.0 | 136 | 0.0890 | 0.9802 | 0.9778 | 0.9780 | 0.9777 | 0.9778 | 0.0223 |
66
+ | 0.1024 | 5.0 | 170 | 0.1092 | 0.9863 | 0.9852 | 0.9852 | 0.9846 | 0.9852 | 0.0154 |
67
+
68
+
69
+ ### Framework versions
70
+
71
+ - Transformers 4.45.2
72
+ - Pytorch 2.5.1+cu121
73
+ - Datasets 3.2.0
74
+ - Tokenizers 0.20.3
all_results.json ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 5.0,
3
+ "eval_accuracy": 0.992,
4
+ "eval_error_rate": 0.008000000000000007,
5
+ "eval_f1": 0.9925797814417668,
6
+ "eval_loss": 0.03836945444345474,
7
+ "eval_precision": 0.9928395061728394,
8
+ "eval_recall": 0.9925925925925926,
9
+ "eval_runtime": 3.768,
10
+ "eval_samples_per_second": 35.828,
11
+ "eval_steps_per_second": 1.327,
12
+ "eval_top1_accuracy": 0.9925925925925926,
13
+ "test_accuracy": 1.0,
14
+ "test_error_rate": 0.0,
15
+ "test_f1": 1.0,
16
+ "test_loss": 0.03548692911863327,
17
+ "test_precision": 1.0,
18
+ "test_recall": 1.0,
19
+ "test_runtime": 3.845,
20
+ "test_samples_per_second": 35.111,
21
+ "test_steps_per_second": 1.3,
22
+ "test_top1_accuracy": 1.0,
23
+ "total_flos": 4.230809974960128e+17,
24
+ "train_loss": 0.2870972801657284,
25
+ "train_runtime": 294.683,
26
+ "train_samples_per_second": 36.65,
27
+ "train_steps_per_second": 1.154
28
+ }
classification_report.csv ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ ,precision,recall,f1-score,support
2
+ Ilang-ilang,1.0,1.0,1.0,26.0
3
+ Mango,1.0,1.0,1.0,30.0
4
+ Narra,1.0,1.0,1.0,30.0
5
+ Royal Palm,1.0,1.0,1.0,24.0
6
+ Tabebuia,1.0,1.0,1.0,25.0
7
+ accuracy,1.0,1.0,1.0,1.0
8
+ macro avg,1.0,1.0,1.0,135.0
9
+ weighted avg,1.0,1.0,1.0,135.0
classification_report.png ADDED
config.json ADDED
@@ -0,0 +1,66 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "microsoft/swin-base-patch4-window7-224",
3
+ "architectures": [
4
+ "SwinForImageClassification"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.0,
7
+ "depths": [
8
+ 2,
9
+ 2,
10
+ 18,
11
+ 2
12
+ ],
13
+ "drop_path_rate": 0.1,
14
+ "embed_dim": 128,
15
+ "encoder_stride": 32,
16
+ "hidden_act": "gelu",
17
+ "hidden_dropout_prob": 0.0,
18
+ "hidden_size": 1024,
19
+ "id2label": {
20
+ "0": "Ilang-ilang",
21
+ "1": "Mango",
22
+ "2": "Narra",
23
+ "3": "Royal Palm",
24
+ "4": "Tabebuia"
25
+ },
26
+ "image_size": 224,
27
+ "initializer_range": 0.02,
28
+ "label2id": {
29
+ "Ilang-ilang": 0,
30
+ "Mango": 1,
31
+ "Narra": 2,
32
+ "Royal Palm": 3,
33
+ "Tabebuia": 4
34
+ },
35
+ "layer_norm_eps": 1e-05,
36
+ "mlp_ratio": 4.0,
37
+ "model_type": "swin",
38
+ "num_channels": 3,
39
+ "num_heads": [
40
+ 4,
41
+ 8,
42
+ 16,
43
+ 32
44
+ ],
45
+ "num_layers": 4,
46
+ "out_features": [
47
+ "stage4"
48
+ ],
49
+ "out_indices": [
50
+ 4
51
+ ],
52
+ "patch_size": 4,
53
+ "path_norm": true,
54
+ "qkv_bias": true,
55
+ "stage_names": [
56
+ "stem",
57
+ "stage1",
58
+ "stage2",
59
+ "stage3",
60
+ "stage4"
61
+ ],
62
+ "torch_dtype": "float32",
63
+ "transformers_version": "4.45.2",
64
+ "use_absolute_embeddings": false,
65
+ "window_size": 7
66
+ }
eval_results.json ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 5.0,
3
+ "eval_accuracy": 0.992,
4
+ "eval_error_rate": 0.008000000000000007,
5
+ "eval_f1": 0.9925797814417668,
6
+ "eval_loss": 0.03836945444345474,
7
+ "eval_precision": 0.9928395061728394,
8
+ "eval_recall": 0.9925925925925926,
9
+ "eval_runtime": 3.768,
10
+ "eval_samples_per_second": 35.828,
11
+ "eval_steps_per_second": 1.327,
12
+ "eval_top1_accuracy": 0.9925925925925926
13
+ }
evaluation/classification_report.csv ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ ,precision,recall,f1-score,support
2
+ Ilang-ilang,1.0,1.0,1.0,26.0
3
+ Mango,1.0,1.0,1.0,30.0
4
+ Narra,1.0,1.0,1.0,30.0
5
+ Royal Palm,1.0,1.0,1.0,24.0
6
+ Tabebuia,1.0,1.0,1.0,25.0
7
+ accuracy,1.0,1.0,1.0,1.0
8
+ macro avg,1.0,1.0,1.0,135.0
9
+ weighted avg,1.0,1.0,1.0,135.0
evaluation/clf_bar.png ADDED
evaluation/confusion_matrix.csv ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ ,Ilang-ilang,Mango,Narra,Royal Palm,Tabebuia
2
+ Ilang-ilang,26,0,0,0,0
3
+ Mango,0,30,0,0,0
4
+ Narra,0,0,30,0,0
5
+ Royal Palm,0,0,0,24,0
6
+ Tabebuia,0,0,0,0,25
evaluation/confusion_matrix.png ADDED
evaluation/results.log ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ 2025-01-21 16:06:13,120 - INFO - plot_confusion_matrix - Confusion Matrix:
2
+ [[26 0 0 0 0]
3
+ [ 0 30 0 0 0]
4
+ [ 0 0 30 0 0]
5
+ [ 0 0 0 24 0]
6
+ [ 0 0 0 0 25]]
7
+ 2025-01-21 16:06:13,664 - INFO - plot_confusion_matrix - Confusion matrix saved to 2025-01-21-15-57-43-swin-base-patch4-window7-224/evaluation/confusion_matrix.png
8
+ 2025-01-21 16:06:13,668 - INFO - plot_confusion_matrix - Confusion matrix report saved to 2025-01-21-15-57-43-swin-base-patch4-window7-224/evaluation/confusion_matrix.csv
9
+ 2025-01-21 16:06:13,841 - INFO - classification_report_bar - Classification report saved to 2025-01-21-15-57-43-swin-base-patch4-window7-224/evaluation/classification_report.csv
10
+ 2025-01-21 16:06:14,595 - INFO - classification_report_bar - Classification report bar chart saved to 2025-01-21-15-57-43-swin-base-patch4-window7-224/evaluation/clf_bar.png
11
+ 2025-01-21 16:06:14,597 - INFO - classification_report_bar - Overall Accuracy: 1.000
12
+ 2025-01-21 16:06:15,423 - INFO - plot_classification_report_heatmap - Classification report heatmap saved to 2025-01-21-15-57-43-swin-base-patch4-window7-224/classification_report.png
13
+ 2025-01-21 16:06:15,589 - INFO - plot_classification_report_heatmap - Classification report saved to 2025-01-21-15-57-43-swin-base-patch4-window7-224/classification_report.csv
14
+ 2025-01-21 16:06:16,641 - INFO - plot_results - Training metrics saved to 2025-01-21-15-57-43-swin-base-patch4-window7-224/training_metrics.csv
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dbe06c0cd821439a29705fba1d4d3f60c22b26e1a66e26f448deb3886e479683
3
+ size 347511116
preprocessor_config.json ADDED
@@ -0,0 +1,22 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "do_normalize": true,
3
+ "do_rescale": true,
4
+ "do_resize": true,
5
+ "image_mean": [
6
+ 0.485,
7
+ 0.456,
8
+ 0.406
9
+ ],
10
+ "image_processor_type": "ViTImageProcessor",
11
+ "image_std": [
12
+ 0.229,
13
+ 0.224,
14
+ 0.225
15
+ ],
16
+ "resample": 3,
17
+ "rescale_factor": 0.00392156862745098,
18
+ "size": {
19
+ "height": 224,
20
+ "width": 224
21
+ }
22
+ }
test_results.json ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "test_accuracy": 1.0,
3
+ "test_error_rate": 0.0,
4
+ "test_f1": 1.0,
5
+ "test_loss": 0.03548692911863327,
6
+ "test_precision": 1.0,
7
+ "test_recall": 1.0,
8
+ "test_runtime": 3.845,
9
+ "test_samples_per_second": 35.111,
10
+ "test_steps_per_second": 1.3,
11
+ "test_top1_accuracy": 1.0
12
+ }
train_and_eval.png ADDED
train_results.json ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 5.0,
3
+ "total_flos": 4.230809974960128e+17,
4
+ "train_loss": 0.2870972801657284,
5
+ "train_runtime": 294.683,
6
+ "train_samples_per_second": 36.65,
7
+ "train_steps_per_second": 1.154
8
+ }
trainer_state.json ADDED
@@ -0,0 +1,176 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": 0.992,
3
+ "best_model_checkpoint": "2025-01-21-15-57-43-swin-base-patch4-window7-224/checkpoint-102",
4
+ "epoch": 5.0,
5
+ "eval_steps": 500,
6
+ "global_step": 170,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 1.0,
13
+ "train_accuracy": 0.7185185185185186
14
+ },
15
+ {
16
+ "epoch": 1.0,
17
+ "grad_norm": 23.64792823791504,
18
+ "learning_rate": 0.0002,
19
+ "loss": 0.732,
20
+ "step": 34
21
+ },
22
+ {
23
+ "epoch": 1.0,
24
+ "eval_accuracy": 0.864857142857143,
25
+ "eval_error_rate": 0.135142857142857,
26
+ "eval_f1": 0.8590001766472355,
27
+ "eval_loss": 0.3980206549167633,
28
+ "eval_precision": 0.9164785420340976,
29
+ "eval_recall": 0.8740740740740741,
30
+ "eval_runtime": 3.5078,
31
+ "eval_samples_per_second": 38.486,
32
+ "eval_steps_per_second": 1.425,
33
+ "eval_top1_accuracy": 0.8740740740740741,
34
+ "step": 34
35
+ },
36
+ {
37
+ "epoch": 2.0,
38
+ "train_accuracy": 0.9185185185185185
39
+ },
40
+ {
41
+ "epoch": 2.0,
42
+ "grad_norm": 8.839152336120605,
43
+ "learning_rate": 0.00017777777777777779,
44
+ "loss": 0.2462,
45
+ "step": 68
46
+ },
47
+ {
48
+ "epoch": 2.0,
49
+ "eval_accuracy": 0.9499066705963257,
50
+ "eval_error_rate": 0.05009332940367428,
51
+ "eval_f1": 0.948411944708241,
52
+ "eval_loss": 0.10511945188045502,
53
+ "eval_precision": 0.9538222952016054,
54
+ "eval_recall": 0.9481481481481482,
55
+ "eval_runtime": 3.5401,
56
+ "eval_samples_per_second": 38.135,
57
+ "eval_steps_per_second": 1.412,
58
+ "eval_top1_accuracy": 0.9481481481481482,
59
+ "step": 68
60
+ },
61
+ {
62
+ "epoch": 3.0,
63
+ "train_accuracy": 0.9349794238683128
64
+ },
65
+ {
66
+ "epoch": 3.0,
67
+ "grad_norm": 8.658217430114746,
68
+ "learning_rate": 0.00015555555555555556,
69
+ "loss": 0.1991,
70
+ "step": 102
71
+ },
72
+ {
73
+ "epoch": 3.0,
74
+ "eval_accuracy": 0.992,
75
+ "eval_error_rate": 0.008000000000000007,
76
+ "eval_f1": 0.9925797814417668,
77
+ "eval_loss": 0.03836945444345474,
78
+ "eval_precision": 0.9928395061728394,
79
+ "eval_recall": 0.9925925925925926,
80
+ "eval_runtime": 3.3904,
81
+ "eval_samples_per_second": 39.819,
82
+ "eval_steps_per_second": 1.475,
83
+ "eval_top1_accuracy": 0.9925925925925926,
84
+ "step": 102
85
+ },
86
+ {
87
+ "epoch": 4.0,
88
+ "train_accuracy": 0.9530864197530864
89
+ },
90
+ {
91
+ "epoch": 4.0,
92
+ "grad_norm": 7.14619779586792,
93
+ "learning_rate": 0.00013333333333333334,
94
+ "loss": 0.1559,
95
+ "step": 136
96
+ },
97
+ {
98
+ "epoch": 4.0,
99
+ "eval_accuracy": 0.9777188328912467,
100
+ "eval_error_rate": 0.022281167108753275,
101
+ "eval_f1": 0.9780454350411318,
102
+ "eval_loss": 0.08900710195302963,
103
+ "eval_precision": 0.98015873015873,
104
+ "eval_recall": 0.9777777777777777,
105
+ "eval_runtime": 3.432,
106
+ "eval_samples_per_second": 39.335,
107
+ "eval_steps_per_second": 1.457,
108
+ "eval_top1_accuracy": 0.9777777777777777,
109
+ "step": 136
110
+ },
111
+ {
112
+ "epoch": 5.0,
113
+ "train_accuracy": 0.9703703703703703
114
+ },
115
+ {
116
+ "epoch": 5.0,
117
+ "grad_norm": 5.705554008483887,
118
+ "learning_rate": 0.00011111111111111112,
119
+ "loss": 0.1024,
120
+ "step": 170
121
+ },
122
+ {
123
+ "epoch": 5.0,
124
+ "eval_accuracy": 0.9846153846153847,
125
+ "eval_error_rate": 0.01538461538461533,
126
+ "eval_f1": 0.9851737891737893,
127
+ "eval_loss": 0.10920833796262741,
128
+ "eval_precision": 0.9862825788751715,
129
+ "eval_recall": 0.9851851851851852,
130
+ "eval_runtime": 3.7553,
131
+ "eval_samples_per_second": 35.949,
132
+ "eval_steps_per_second": 1.331,
133
+ "eval_top1_accuracy": 0.9851851851851852,
134
+ "step": 170
135
+ },
136
+ {
137
+ "epoch": 5.0,
138
+ "step": 170,
139
+ "total_flos": 4.230809974960128e+17,
140
+ "train_loss": 0.2870972801657284,
141
+ "train_runtime": 294.683,
142
+ "train_samples_per_second": 36.65,
143
+ "train_steps_per_second": 1.154
144
+ }
145
+ ],
146
+ "logging_steps": 1,
147
+ "max_steps": 340,
148
+ "num_input_tokens_seen": 0,
149
+ "num_train_epochs": 10,
150
+ "save_steps": 500,
151
+ "stateful_callbacks": {
152
+ "EarlyStoppingCallback": {
153
+ "args": {
154
+ "early_stopping_patience": 2,
155
+ "early_stopping_threshold": 0.0
156
+ },
157
+ "attributes": {
158
+ "early_stopping_patience_counter": 2
159
+ }
160
+ },
161
+ "TrainerControl": {
162
+ "args": {
163
+ "should_epoch_stop": false,
164
+ "should_evaluate": false,
165
+ "should_log": false,
166
+ "should_save": true,
167
+ "should_training_stop": true
168
+ },
169
+ "attributes": {}
170
+ }
171
+ },
172
+ "total_flos": 4.230809974960128e+17,
173
+ "train_batch_size": 32,
174
+ "trial_name": null,
175
+ "trial_params": null
176
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a1a2887287c3d672c92c167523b2c6c3adf9289fb5fda4651f6df7ab84d3bf1c
3
+ size 5176
training_metrics.csv ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ Epoch,Train Loss,Eval Loss,Train Accuracy,Eval Accuracy
2
+ 1,0.732,0.3980206549167633,0.7185185185185186,0.864857142857143
3
+ 2,0.2462,0.10511945188045502,0.9185185185185185,0.9499066705963257
4
+ 3,0.1991,0.03836945444345474,0.9349794238683128,0.992
5
+ 4,0.1559,0.08900710195302963,0.9530864197530864,0.9777188328912467
6
+ 5,0.1024,0.10920833796262741,0.9703703703703703,0.9846153846153847