alxxtexxr's picture
RoBERTa-Base-Avg-SE2025T11A-sun-v20241224104615
8c723a7 verified
metadata
library_name: transformers
license: mit
base_model: w11wo/sundanese-roberta-base-emotion-classifier
tags:
  - generated_from_trainer
model-index:
  - name: RoBERTa-Base-Avg-SE2025T11A-sun-v20241224104615
    results: []

RoBERTa-Base-Avg-SE2025T11A-sun-v20241224104615

This model is a fine-tuned version of w11wo/sundanese-roberta-base-emotion-classifier on an unknown dataset. It achieves the following results on the evaluation set:

  • eval_loss: 0.3618
  • eval_model_preparation_time: 0.0032
  • eval_f1_micro: 0.6933
  • eval_f1_macro: 0.3543
  • eval_f1_label_marah: 0.1538
  • eval_f1_label_jijik: 0.2222
  • eval_f1_label_takut: 0.0
  • eval_f1_label_senang: 0.8763
  • eval_f1_label_sedih: 0.6667
  • eval_f1_label_terkejut: 0.3111
  • eval_f1_label_biasa: 0.25
  • eval_runtime: 1.8475
  • eval_samples_per_second: 69.282
  • eval_steps_per_second: 34.641
  • step: 0

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 8

Framework versions

  • Transformers 4.47.1
  • Pytorch 2.5.1+cu121
  • Datasets 3.2.0
  • Tokenizers 0.21.0