|
--- |
|
language: |
|
- es |
|
license: cc-by-4.0 |
|
library_name: span-marker |
|
tags: |
|
- span-marker |
|
- token-classification |
|
- ner |
|
- named-entity-recognition |
|
- generated_from_span_marker_trainer |
|
datasets: |
|
- conll2002 |
|
metrics: |
|
- precision |
|
- recall |
|
- f1 |
|
widget: |
|
- text: George Washington estuvo en Washington. |
|
pipeline_tag: token-classification |
|
base_model: PlanTL-GOB-ES/roberta-base-bne |
|
model-index: |
|
- name: SpanMarker with PlanTL-GOB-ES/roberta-base-bne on conll2002 |
|
results: |
|
- task: |
|
type: token-classification |
|
name: Named Entity Recognition |
|
dataset: |
|
name: conll2002 |
|
type: conll2002 |
|
split: eval |
|
metrics: |
|
- type: f1 |
|
value: 0.871172868582195 |
|
name: F1 |
|
- type: precision |
|
value: 0.888328530259366 |
|
name: Precision |
|
- type: recall |
|
value: 0.8546672828096118 |
|
name: Recall |
|
--- |
|
|
|
# SpanMarker with PlanTL-GOB-ES/roberta-base-bne on conll2002 |
|
|
|
This is a [SpanMarker](https://github.com/tomaarsen/SpanMarkerNER) model trained on the [conll2002](https://huggingface.co/datasets/conll2002) dataset that can be used for Named Entity Recognition. This SpanMarker model uses [PlanTL-GOB-ES/roberta-base-bne](https://huggingface.co/PlanTL-GOB-ES/roberta-base-bne) as the underlying encoder. |
|
|
|
## Model Details |
|
|
|
### Model Description |
|
|
|
- **Model Type:** SpanMarker |
|
- **Encoder:** [PlanTL-GOB-ES/roberta-base-bne](https://huggingface.co/PlanTL-GOB-ES/roberta-base-bne) |
|
- **Maximum Sequence Length:** 256 tokens |
|
- **Maximum Entity Length:** 8 words |
|
- **Training Dataset:** [conll2002](https://huggingface.co/datasets/conll2002) |
|
- **Languages:** es |
|
- **License:** cc-by-4.0 |
|
|
|
### Model Sources |
|
|
|
- **Repository:** [SpanMarker on GitHub](https://github.com/tomaarsen/SpanMarkerNER) |
|
- **Thesis:** [SpanMarker For Named Entity Recognition](https://raw.githubusercontent.com/tomaarsen/SpanMarkerNER/main/thesis.pdf) |
|
|
|
### Model Labels |
|
|
|
| Label | Examples | |
|
|:------|:------------------------------------------------------------------| |
|
| LOC | "Australia", "Victoria", "Melbourne" | |
|
| MISC | "Ley", "Ciudad", "CrimeNet" | |
|
| ORG | "Commonwealth", "EFE", "Tribunal Supremo" | |
|
| PER | "Abogado General del Estado", "Daryl Williams", "Abogado General" | |
|
|
|
## Uses |
|
|
|
### Direct Use for Inference |
|
|
|
```python |
|
from span_marker import SpanMarkerModel |
|
|
|
# Download from the 🤗 Hub |
|
model = SpanMarkerModel.from_pretrained("alvarobartt/span-marker-roberta-base-bne-conll-2002-es") |
|
# Run inference |
|
entities = model.predict("George Washington estuvo en Washington.") |
|
``` |
|
|
|
<!-- |
|
### Out-of-Scope Use |
|
|
|
*List how the model may foreseeably be misused and address what users ought not to do with the model.* |
|
--> |
|
|
|
<!-- |
|
## Bias, Risks and Limitations |
|
|
|
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* |
|
--> |
|
|
|
<!-- |
|
### Recommendations |
|
|
|
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* |
|
--> |
|
|
|
## Training Details |
|
|
|
### Training Set Metrics |
|
|
|
| Training set | Min | Median | Max | |
|
|:----------------------|:----|:--------|:-----| |
|
| Sentence length | 1 | 31.8052 | 1238 | |
|
| Entities per sentence | 0 | 2.2586 | 160 | |
|
|
|
### Training Hyperparameters |
|
|
|
- learning_rate: 5e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_ratio: 0.1 |
|
- num_epochs: 2 |
|
|
|
### Training Results |
|
|
|
| Epoch | Step | Validation Loss | Validation Precision | Validation Recall | Validation F1 | Validation Accuracy | |
|
|:------:|:----:|:---------------:|:--------------------:|:-----------------:|:-------------:|:-------------------:| |
|
| 0.1188 | 100 | 0.0704 | 0.0 | 0.0 | 0.0 | 0.8608 | |
|
| 0.2375 | 200 | 0.0279 | 0.8765 | 0.4034 | 0.5525 | 0.9025 | |
|
| 0.3563 | 300 | 0.0158 | 0.8381 | 0.7211 | 0.7752 | 0.9524 | |
|
| 0.4751 | 400 | 0.0134 | 0.8525 | 0.7463 | 0.7959 | 0.9576 | |
|
| 0.5938 | 500 | 0.0130 | 0.8844 | 0.7549 | 0.8145 | 0.9560 | |
|
| 0.7126 | 600 | 0.0119 | 0.8480 | 0.8006 | 0.8236 | 0.9650 | |
|
| 0.8314 | 700 | 0.0098 | 0.8794 | 0.8408 | 0.8597 | 0.9695 | |
|
| 0.9501 | 800 | 0.0091 | 0.8842 | 0.8360 | 0.8594 | 0.9722 | |
|
| 1.0689 | 900 | 0.0093 | 0.8976 | 0.8387 | 0.8672 | 0.9698 | |
|
| 1.1876 | 1000 | 0.0094 | 0.8880 | 0.8517 | 0.8694 | 0.9739 | |
|
| 1.3064 | 1100 | 0.0086 | 0.8920 | 0.8530 | 0.8721 | 0.9737 | |
|
| 1.4252 | 1200 | 0.0092 | 0.8896 | 0.8452 | 0.8668 | 0.9728 | |
|
| 1.5439 | 1300 | 0.0094 | 0.8765 | 0.8313 | 0.8533 | 0.9720 | |
|
| 1.6627 | 1400 | 0.0089 | 0.8805 | 0.8445 | 0.8621 | 0.9720 | |
|
| 1.7815 | 1500 | 0.0088 | 0.8834 | 0.8581 | 0.8706 | 0.9747 | |
|
| 1.9002 | 1600 | 0.0088 | 0.8883 | 0.8547 | 0.8712 | 0.9747 | |
|
|
|
### Framework Versions |
|
|
|
- Python: 3.10.12 |
|
- SpanMarker: 1.3.1.dev |
|
- Transformers: 4.33.2 |
|
- PyTorch: 2.0.1+cu118 |
|
- Datasets: 2.14.5 |
|
- Tokenizers: 0.13.3 |
|
|
|
## Citation |
|
|
|
### BibTeX |
|
``` |
|
@software{Aarsen_SpanMarker, |
|
author = {Aarsen, Tom}, |
|
license = {Apache-2.0}, |
|
title = {{SpanMarker for Named Entity Recognition}}, |
|
url = {https://github.com/tomaarsen/SpanMarkerNER} |
|
} |
|
``` |
|
|
|
<!-- |
|
## Glossary |
|
|
|
*Clearly define terms in order to be accessible across audiences.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Authors |
|
|
|
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Contact |
|
|
|
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* |
|
--> |
|
|