alshelt's picture
Model save
741ad76 verified
metadata
tags:
  - generated_from_trainer
model-index:
  - name: led-large
    results: []

led-large

This model was trained from scratch on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1850

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 42
  • gradient_accumulation_steps: 64
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: polynomial
  • lr_scheduler_warmup_steps: 500
  • training_steps: 20000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss
0.1479 0.11 500 0.1901
0.1442 0.22 1000 0.1917
0.1466 0.33 1500 0.1959
0.1447 0.45 2000 0.1918
0.1633 0.56 2500 0.1874
0.171 0.67 3000 0.1849
0.1662 0.78 3500 0.1843
0.1743 0.89 4000 0.1837
0.1492 1.0 4500 0.1842
0.1515 1.11 5000 0.1849
0.1497 1.23 5500 0.1840
0.1515 1.34 6000 0.1839
0.1482 1.45 6500 0.1841
0.145 1.56 7000 0.1849
0.1467 1.67 7500 0.1824
0.1509 1.78 8000 0.1809
0.15 1.89 8500 0.1832
0.1383 2.01 9000 0.1831
0.1331 2.12 9500 0.1820
0.1406 2.23 10000 0.1830
0.1362 2.34 10500 0.1844
0.1373 2.45 11000 0.1836
0.1269 2.56 11500 0.1842
0.1362 2.67 12000 0.1819
0.14 2.79 12500 0.1832
0.1319 2.9 13000 0.1837
0.1304 3.01 13500 0.1845
0.1278 3.12 14000 0.1844
0.1235 3.23 14500 0.1832
0.1293 3.34 15000 0.1855
0.1302 3.45 15500 0.1836
0.1285 3.57 16000 0.1860
0.1274 3.68 16500 0.1860
0.1261 3.79 17000 0.1854
0.1304 3.9 17500 0.1859
0.1223 4.01 18000 0.1862
0.1235 4.12 18500 0.1849
0.1286 4.23 19000 0.1858
0.1186 4.35 19500 0.1856
0.1293 4.46 20000 0.1850

Framework versions

  • Transformers 4.37.2
  • Pytorch 2.2.2+cu121
  • Datasets 2.18.0
  • Tokenizers 0.15.1