metadata
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:25012
- loss:MultipleNegativesRankingLoss
base_model: nomic-ai/modernbert-embed-base
widget:
- source_sentence: ÇİFT KLİMALI BARAN FREE COOLING UNIT MONTAJ KITI.
sentences:
- Building construction machinery and accessories
- Building construction machinery and accessories
- Mounting Hardware
- source_sentence: >-
HUAWEI.TN1-L4G-100GHz-FEC /Line Wavelength Conversion Board with 4xGigabit
Ethernet Line Capacity
sentences:
- Fixed network equipment and components
- Audio and visual equipment
- System boards processors interfaces or modules
- source_sentence: ASR 9922 System Fan Tray v3, Spare
sentences:
- Security and control equipment
- Computers
- System boards processors interfaces or modules
- source_sentence: Enhanced Cat.5E UTP Patch Cord 1.5M, White
sentences:
- Electrical cable and accessories
- Computer accessories
- Air circulation and parts and accessories
- source_sentence: Controller CXC
sentences:
- Personal communication devices
- Fixed network equipment and components
- Power generation control equipment
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- pearson_cosine
- spearman_cosine
model-index:
- name: SentenceTransformer based on nomic-ai/modernbert-embed-base
results:
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: Unknown
type: unknown
metrics:
- type: pearson_cosine
value: .nan
name: Pearson Cosine
- type: spearman_cosine
value: .nan
name: Spearman Cosine
SentenceTransformer based on nomic-ai/modernbert-embed-base
This is a sentence-transformers model finetuned from nomic-ai/modernbert-embed-base. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: nomic-ai/modernbert-embed-base
- Maximum Sequence Length: 8192 tokens
- Output Dimensionality: 768 dimensions
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: ModernBertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("alpcansoydas/product-model-02.12.25-total46clas-ifhavemorethan100sampleperclass-0.71acc")
# Run inference
sentences = [
'Controller CXC',
'Power generation control equipment',
'Personal communication devices',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Semantic Similarity
- Evaluated with
EmbeddingSimilarityEvaluator
Metric | Value |
---|---|
pearson_cosine | nan |
spearman_cosine | nan |
Training Details
Training Dataset
Unnamed Dataset
- Size: 25,012 training samples
- Columns:
sentence1
andsentence2
- Approximate statistics based on the first 1000 samples:
sentence1 sentence2 type string string details - min: 4 tokens
- mean: 18.46 tokens
- max: 85 tokens
- min: 4 tokens
- mean: 6.42 tokens
- max: 11 tokens
- Samples:
sentence1 sentence2 HPE MSA 14.4T SAS 10K SFF M2 6pk HDD Bdl
Media storage devices
Huawei Solar Greensites Solution (Yerli Panel_4*540Wp_Huawei Panel + PVPU+Konstrüksiyon+İşçilik)
Power generation control equipment
NetEngine9000 10G EVPN Port License(per 10G)
Network management software
- Loss:
MultipleNegativesRankingLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Evaluation Dataset
Unnamed Dataset
- Size: 3,127 evaluation samples
- Columns:
sentence1
andsentence2
- Approximate statistics based on the first 1000 samples:
sentence1 sentence2 type string string details - min: 3 tokens
- mean: 18.0 tokens
- max: 77 tokens
- min: 4 tokens
- mean: 6.4 tokens
- max: 11 tokens
- Samples:
sentence1 sentence2 CONNECTION CABLE
Electrical cable and accessories
MMU2 B 4-16 (24V, -48V)
Electronic component parts and raw materials and accessories
3ft C14 to C13 locking power cable 15A/250V - red
Electrical cable and accessories
- Loss:
MultipleNegativesRankingLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 32per_device_eval_batch_size
: 32warmup_ratio
: 0.1fp16
: True
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 32per_device_eval_batch_size
: 32per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 3max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Truefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | Validation Loss | spearman_cosine |
---|---|---|---|---|
0.1279 | 100 | 2.5126 | 2.1189 | nan |
0.2558 | 200 | 1.9979 | 1.9490 | nan |
0.3836 | 300 | 1.8803 | 1.9128 | nan |
0.5115 | 400 | 1.8242 | 1.8253 | nan |
0.6394 | 500 | 1.8024 | 1.7830 | nan |
0.7673 | 600 | 1.7425 | 1.7727 | nan |
0.8951 | 700 | 1.7302 | 1.7469 | nan |
1.0230 | 800 | 1.6722 | 1.7273 | nan |
1.1509 | 900 | 1.4698 | 1.7384 | nan |
1.2788 | 1000 | 1.5151 | 1.7111 | nan |
1.4066 | 1100 | 1.5151 | 1.7173 | nan |
1.5345 | 1200 | 1.494 | 1.6988 | nan |
1.6624 | 1300 | 1.4935 | 1.7058 | nan |
1.7903 | 1400 | 1.5143 | 1.6664 | nan |
1.9182 | 1500 | 1.5253 | 1.6636 | nan |
2.0460 | 1600 | 1.4355 | 1.6781 | nan |
2.1739 | 1700 | 1.3638 | 1.6944 | nan |
2.3018 | 1800 | 1.319 | 1.6829 | nan |
2.4297 | 1900 | 1.2848 | 1.7047 | nan |
2.5575 | 2000 | 1.3207 | 1.6950 | nan |
2.6854 | 2100 | 1.2769 | 1.6911 | nan |
2.8133 | 2200 | 1.2934 | 1.6958 | nan |
2.9412 | 2300 | 1.3244 | 1.6897 | nan |
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.3.1
- Transformers: 4.48.0.dev0
- PyTorch: 2.5.1+cu121
- Accelerate: 1.2.1
- Datasets: 3.2.0
- Tokenizers: 0.21.0
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}