|
--- |
|
language: fr |
|
--- |
|
|
|
> 🚨 **Update:** This checkpoint is deprecated, please use https://huggingface.co/almanach/camembert-base instead 🚨 |
|
|
|
|
|
# CamemBERT: a Tasty French Language Model |
|
|
|
## Introduction |
|
|
|
[CamemBERT](https://arxiv.org/abs/1911.03894) is a state-of-the-art language model for French based on the RoBERTa model. |
|
|
|
It is now available on Hugging Face in 6 different versions with varying number of parameters, amount of pretraining data and pretraining data source domains. |
|
|
|
For further information or requests, please go to [Camembert Website](https://camembert-model.fr/) |
|
|
|
## Pre-trained models |
|
|
|
| Model | #params | Arch. | Training data | |
|
|--------------------------------|--------------------------------|-------|-----------------------------------| |
|
| `camembert-base` | 110M | Base | OSCAR (138 GB of text) | |
|
| `camembert/camembert-large` | 335M | Large | CCNet (135 GB of text) | |
|
| `camembert/camembert-base-ccnet` | 110M | Base | CCNet (135 GB of text) | |
|
| `camembert/camembert-base-wikipedia-4gb` | 110M | Base | Wikipedia (4 GB of text) | |
|
| `camembert/camembert-base-oscar-4gb` | 110M | Base | Subsample of OSCAR (4 GB of text) | |
|
| `camembert/camembert-base-ccnet-4gb` | 110M | Base | Subsample of CCNet (4 GB of text) | |
|
|
|
## How to use CamemBERT with HuggingFace |
|
|
|
##### Load CamemBERT and its sub-word tokenizer : |
|
```python |
|
from transformers import CamembertModel, CamembertTokenizer |
|
|
|
# You can replace "camembert-base" with any other model from the table, e.g. "camembert/camembert-large". |
|
tokenizer = CamembertTokenizer.from_pretrained("camembert/camembert-base-wikipedia-4gb") |
|
camembert = CamembertModel.from_pretrained("camembert/camembert-base-wikipedia-4gb") |
|
|
|
camembert.eval() # disable dropout (or leave in train mode to finetune) |
|
|
|
``` |
|
|
|
##### Filling masks using pipeline |
|
```python |
|
from transformers import pipeline |
|
|
|
camembert_fill_mask = pipeline("fill-mask", model="camembert/camembert-base-wikipedia-4gb", tokenizer="camembert/camembert-base-wikipedia-4gb") |
|
results = camembert_fill_mask("Le camembert est un fromage de <mask>!") |
|
# results |
|
#[{'sequence': '<s> Le camembert est un fromage de chèvre!</s>', 'score': 0.4937814474105835, 'token': 19370}, |
|
#{'sequence': '<s> Le camembert est un fromage de brebis!</s>', 'score': 0.06255942583084106, 'token': 30616}, |
|
#{'sequence': '<s> Le camembert est un fromage de montagne!</s>', 'score': 0.04340197145938873, 'token': 2364}, |
|
# {'sequence': '<s> Le camembert est un fromage de Noël!</s>', 'score': 0.02823255956172943, 'token': 3236}, |
|
#{'sequence': '<s> Le camembert est un fromage de vache!</s>', 'score': 0.021357402205467224, 'token': 12329}] |
|
``` |
|
|
|
##### Extract contextual embedding features from Camembert output |
|
```python |
|
import torch |
|
# Tokenize in sub-words with SentencePiece |
|
tokenized_sentence = tokenizer.tokenize("J'aime le camembert !") |
|
# ['▁J', "'", 'aime', '▁le', '▁ca', 'member', 't', '▁!'] |
|
|
|
# 1-hot encode and add special starting and end tokens |
|
encoded_sentence = tokenizer.encode(tokenized_sentence) |
|
# [5, 221, 10, 10600, 14, 8952, 10540, 75, 1114, 6] |
|
# NB: Can be done in one step : tokenize.encode("J'aime le camembert !") |
|
|
|
# Feed tokens to Camembert as a torch tensor (batch dim 1) |
|
encoded_sentence = torch.tensor(encoded_sentence).unsqueeze(0) |
|
embeddings, _ = camembert(encoded_sentence) |
|
# embeddings.detach() |
|
# embeddings.size torch.Size([1, 10, 768]) |
|
#tensor([[[-0.0928, 0.0506, -0.0094, ..., -0.2388, 0.1177, -0.1302], |
|
# [ 0.0662, 0.1030, -0.2355, ..., -0.4224, -0.0574, -0.2802], |
|
# [-0.0729, 0.0547, 0.0192, ..., -0.1743, 0.0998, -0.2677], |
|
# ..., |
|
``` |
|
|
|
##### Extract contextual embedding features from all Camembert layers |
|
```python |
|
from transformers import CamembertConfig |
|
# (Need to reload the model with new config) |
|
config = CamembertConfig.from_pretrained("camembert/camembert-base-wikipedia-4gb", output_hidden_states=True) |
|
camembert = CamembertModel.from_pretrained("camembert/camembert-base-wikipedia-4gb", config=config) |
|
|
|
embeddings, _, all_layer_embeddings = camembert(encoded_sentence) |
|
# all_layer_embeddings list of len(all_layer_embeddings) == 13 (input embedding layer + 12 self attention layers) |
|
all_layer_embeddings[5] |
|
# layer 5 contextual embedding : size torch.Size([1, 10, 768]) |
|
#tensor([[[-0.0059, -0.0227, 0.0065, ..., -0.0770, 0.0369, 0.0095], |
|
# [ 0.2838, -0.1531, -0.3642, ..., -0.0027, -0.8502, -0.7914], |
|
# [-0.0073, -0.0338, -0.0011, ..., 0.0533, -0.0250, -0.0061], |
|
# ..., |
|
``` |
|
|
|
|
|
## Authors |
|
|
|
CamemBERT was trained and evaluated by Louis Martin\*, Benjamin Muller\*, Pedro Javier Ortiz Suárez\*, Yoann Dupont, Laurent Romary, Éric Villemonte de la Clergerie, Djamé Seddah and Benoît Sagot. |
|
|
|
|
|
## Citation |
|
If you use our work, please cite: |
|
|
|
```bibtex |
|
@inproceedings{martin2020camembert, |
|
title={CamemBERT: a Tasty French Language Model}, |
|
author={Martin, Louis and Muller, Benjamin and Su{\'a}rez, Pedro Javier Ortiz and Dupont, Yoann and Romary, Laurent and de la Clergerie, {\'E}ric Villemonte and Seddah, Djam{\'e} and Sagot, Beno{\^\i}t}, |
|
booktitle={Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics}, |
|
year={2020} |
|
} |
|
``` |
|
|