ner_tag_model / README.md
almaghrabima's picture
Update README.md
85da6b4
|
raw
history blame
2.83 kB
metadata
license: mit
base_model: Gladiator/microsoft-deberta-v3-large_ner_conll2003
tags:
  - generated_from_trainer
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: ner_tag_model
    results:
      - task:
          name: Token Classification
          type: token-classification
        metrics:
          - name: Precision
            type: precision
            value: 0.8568714588197879
          - name: Recall
            type: recall
            value: 0.8550538245045557
          - name: F1
            type: f1
            value: 0.8559616767268047
          - name: Accuracy
            type: accuracy
            value: 0.9150941588185013]
language:
  - en

ner_tag_model

This model is a fine-tuned version of Gladiator/microsoft-deberta-v3-large_ner_conll2003 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1712
  • Precision: 0.8569
  • Recall: 0.8551
  • F1: 0.8560
  • Accuracy: 0.9151

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.2322 1.0 2495 0.1925 0.7990 0.7924 0.7957 0.8969
0.1674 2.0 4990 0.1488 0.8218 0.8316 0.8267 0.9116
0.1381 3.0 7485 0.1438 0.8204 0.8350 0.8276 0.9130
0.1284 4.0 9980 0.1381 0.8419 0.8405 0.8412 0.9148
0.1198 5.0 12475 0.1400 0.8280 0.8410 0.8345 0.9148
0.1155 6.0 14970 0.1395 0.8379 0.8467 0.8423 0.9154
0.1125 7.0 17465 0.1496 0.8438 0.8487 0.8462 0.9151
0.1068 8.0 19960 0.1510 0.8518 0.8529 0.8523 0.9156
0.1002 9.0 22455 0.1616 0.8536 0.8539 0.8537 0.9150
0.0964 10.0 24950 0.1712 0.8569 0.8551 0.8560 0.9151

Framework versions

  • Transformers 4.33.1
  • Pytorch 1.13.1+cu116
  • Datasets 2.14.5
  • Tokenizers 0.13.3