hamishivi commited on
Commit
50e6c52
1 Parent(s): 2325dd2

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +77 -0
README.md ADDED
@@ -0,0 +1,77 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ ---
5
+
6
+ # Open-Instruct Flan V2 7B
7
+
8
+ This model is a 7B LLaMa model finetuned on the Flan V2 dataset. *Please note this is a model diff - see below for usage instructions*.
9
+
10
+ This was trained as part of the paper [How Far Can Camels Go? Exploring the State of Instruction Tuning on Open Resources](https://arxiv.org/abs/2306.04751).
11
+ The codebase used to train and evaluate this model can be found at [https://github.com/allenai/open-instruct](https://github.com/allenai/open-instruct).
12
+
13
+ This model is licensed under the AI model license given in LICENSE.txt along with the original Llama license (llama_license.txt).
14
+
15
+ ## Usage
16
+
17
+ We assume you have access to a LLaMa model in HF format already. You can find details on getting access and converting the model here:
18
+ [https://huggingface.co/docs/transformers/main/model_doc/llama](https://huggingface.co/docs/transformers/main/model_doc/llama)
19
+
20
+ Clone [https://github.com/allenai/open-instruct](https://github.com/allenai/open-instruct) and install the required dependencies, or just copy `scripts/weight_diff.py`
21
+ and install the minimal requirements listed in `weight-diff-requirements.txt`. Then download or clone this model diff to the same machine.
22
+
23
+ Then, run:
24
+ ```bash
25
+ python scripts/weight_diff.py recover --path_raw ${hf_llama_path} --path_tuned ${output_path} --path_diff ${diff_location}
26
+ ```
27
+
28
+ And you will have a recovered model! Note this takes up a decent amount of RAM, especially for the larger models.
29
+
30
+ ## Input Format
31
+
32
+ The model is trained to use the following format (note the newlines):
33
+ ```
34
+ <|user|>
35
+ Your message here!
36
+ <|assistant|>
37
+ ```
38
+
39
+ For best results, format all inputs in this manner.
40
+
41
+ ## Performance
42
+
43
+ Here is the performance of this model across benchmarks explored in our paper [How Far Can Camels Go? Exploring the State of Instruction Tuning on Open Resources](https://arxiv.org/abs/2306.04751):
44
+
45
+ | MMLU 0-shot | MMLU 5-shot | GSM Direct | GSM CoT | BBH Direct | BBH CoT | TydiQA Gold-Passage | TydiQA Closed-book | Codex-Eval Pass@1 | Codex-Eval Pass@10 | AlpacaFarm vs Davinci-003 | Average |
46
+ |:-----------:|:-----------:|:----------:|:-------:|:----------:|:-------:|:-------------------:|:------------------:|:-----------------:|:------------------:|:-------------------------:|---------|
47
+ | 45.4 | 47.1 | 3.5 | 13.0 | 38.6 | 36.1 | 45.0 | 8.3 | 9.6 | 12.9 | 4.6 | 22.4 |
48
+
49
+ If you use this model, please cite our work, the llama paper, and the original dataset:
50
+
51
+ ```
52
+ @article{camelevaluation,
53
+ title={How Far Can Camels Go? Exploring the State of Instruction Tuning on Open Resources},
54
+ author={Yizhong Wang, Hamish Ivison, Pradeep Dasigi, Jack Hessel, Tushar Khot, Khyathi Raghavi Chandu, David Wadden, Kelsey MacMillan, Noah A. Smith, Iz Beltagy, Hannaneh Hajishirzi},
55
+ year={2023}
56
+ }
57
+ ```
58
+
59
+ ```
60
+ @misc{touvron2023llama,
61
+ title={LLaMA: Open and Efficient Foundation Language Models},
62
+ author={Hugo Touvron and Thibaut Lavril and Gautier Izacard and Xavier Martinet and Marie-Anne Lachaux and Timothée Lacroix and Baptiste Rozière and Naman Goyal and Eric Hambro and Faisal Azhar and Aurelien Rodriguez and Armand Joulin and Edouard Grave and Guillaume Lample},
63
+ year={2023},
64
+ eprint={2302.13971},
65
+ archivePrefix={arXiv},
66
+ primaryClass={cs.CL}
67
+ }
68
+ ```
69
+
70
+ ```
71
+ @article{longpre2023flan,
72
+ title={The Flan Collection: Designing Data and Methods for Effective Instruction Tuning},
73
+ author={Longpre, Shayne and Hou, Le and Vu, Tu and Webson, Albert and Chung, Hyung Won and Tay, Yi and Zhou, Denny and Le, Quoc V and Zoph, Barret and Wei, Jason and others},
74
+ journal={arXiv preprint arXiv:2301.13688},
75
+ year={2023}
76
+ }
77
+ ```