metadata
tags:
- generated_from_trainer
datasets:
- allenai/mslr2022
model-index:
- name: baseline
results: []
Overview
This model is a fine-tuned version of allenai/led-base-16384 on the allenai/mslr2022 ms2 dataset. It achieves the following results on the evaluation set:
- eval_loss: 3.7527
- eval_rouge1_fmeasure_mean: 27.9314
- eval_rouge2_fmeasure_mean: 9.4000
- eval_rougeL_fmeasure_mean: 20.9302
- eval_rougeLsum_fmeasure_mean: 23.6179
- eval_bertscore_hashcode: microsoft/deberta-xlarge-mnli_L40_no-idf_version=0.3.11(hug_trans=4.21.0.dev0)-rescaled_fast-tokenizer
- eval_bertscore_f1_mean: 23.5092
- eval_seed: 42
- eval_model_name_or_path: output/ms2/led-base/baseline
- eval_doc_sep_token:
- eval_runtime: 820.6405
- eval_samples_per_second: 2.463
- eval_steps_per_second: 0.617
- step: 0
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10
- mixed_precision_training: Native AMP
- label_smoothing_factor: 0.1
Framework versions
- Transformers 4.21.0.dev0
- Pytorch 1.10.0
- Datasets 2.3.3.dev0
- Tokenizers 0.12.1