shanearora
commited on
Commit
•
704314f
1
Parent(s):
1ce116f
Update README.md
Browse files
README.md
CHANGED
@@ -25,19 +25,19 @@ The core models released in this batch are the following:
|
|
25 |
|
26 |
|
27 |
[Coming soon] We are releasing many checkpoints for these models, for every 1000 training steps.
|
28 |
-
The naming convention is `stepXXX-tokensYYYB`. These checkpoints are already available at [OLMo 7B April 2024](https://huggingface.co/allenai/OLMo-
|
29 |
and will be copied here soon.
|
30 |
|
31 |
To load a specific model revision with HuggingFace, simply add the argument `revision`:
|
32 |
```bash
|
33 |
-
olmo = AutoModelForCausalLM.from_pretrained("allenai/OLMo-7B-
|
34 |
```
|
35 |
|
36 |
All revisions/branches are listed in the file `revisions.txt`.
|
37 |
Or, you can access all the revisions for the models via the following code snippet:
|
38 |
```python
|
39 |
from huggingface_hub import list_repo_refs
|
40 |
-
out = list_repo_refs("allenai/OLMo-7B-
|
41 |
branches = [b.name for b in out.branches]
|
42 |
```
|
43 |
|
@@ -73,8 +73,8 @@ Install Transformers [from source](https://huggingface.co/docs/transformers/en/i
|
|
73 |
Now, proceed as usual with HuggingFace:
|
74 |
```python
|
75 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
76 |
-
olmo = AutoModelForCausalLM.from_pretrained("allenai/OLMo-7B-
|
77 |
-
tokenizer = AutoTokenizer.from_pretrained("allenai/OLMo-7B-
|
78 |
message = ["Language modeling is "]
|
79 |
inputs = tokenizer(message, return_tensors='pt', return_token_type_ids=False)
|
80 |
# optional verifying cuda
|
@@ -87,12 +87,12 @@ print(tokenizer.batch_decode(response, skip_special_tokens=True)[0])
|
|
87 |
Alternatively, with the pipeline abstraction:
|
88 |
```python
|
89 |
from transformers import pipeline
|
90 |
-
olmo_pipe = pipeline("text-generation", model="allenai/OLMo-7B-
|
91 |
print(olmo_pipe("Language modeling is "))
|
92 |
>> 'Language modeling is a branch of natural language processing that aims to...'
|
93 |
```
|
94 |
|
95 |
-
Or, you can make this slightly faster by quantizing the model, e.g. `AutoModelForCausalLM.from_pretrained("allenai/OLMo-7B-
|
96 |
The quantized model is more sensitive to typing / cuda, so it is recommended to pass the inputs as `inputs.input_ids.to('cuda')` to avoid potential issues.
|
97 |
|
98 |
### Fine-tuning
|
|
|
25 |
|
26 |
|
27 |
[Coming soon] We are releasing many checkpoints for these models, for every 1000 training steps.
|
28 |
+
The naming convention is `stepXXX-tokensYYYB`. These checkpoints are already available at [OLMo 7B April 2024](https://huggingface.co/allenai/OLMo-7B-0424-hf)
|
29 |
and will be copied here soon.
|
30 |
|
31 |
To load a specific model revision with HuggingFace, simply add the argument `revision`:
|
32 |
```bash
|
33 |
+
olmo = AutoModelForCausalLM.from_pretrained("allenai/OLMo-7B-0724-hf", revision="step1000-tokens4B")
|
34 |
```
|
35 |
|
36 |
All revisions/branches are listed in the file `revisions.txt`.
|
37 |
Or, you can access all the revisions for the models via the following code snippet:
|
38 |
```python
|
39 |
from huggingface_hub import list_repo_refs
|
40 |
+
out = list_repo_refs("allenai/OLMo-7B-0724-hf")
|
41 |
branches = [b.name for b in out.branches]
|
42 |
```
|
43 |
|
|
|
73 |
Now, proceed as usual with HuggingFace:
|
74 |
```python
|
75 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
76 |
+
olmo = AutoModelForCausalLM.from_pretrained("allenai/OLMo-7B-0724-hf")
|
77 |
+
tokenizer = AutoTokenizer.from_pretrained("allenai/OLMo-7B-0724-hf")
|
78 |
message = ["Language modeling is "]
|
79 |
inputs = tokenizer(message, return_tensors='pt', return_token_type_ids=False)
|
80 |
# optional verifying cuda
|
|
|
87 |
Alternatively, with the pipeline abstraction:
|
88 |
```python
|
89 |
from transformers import pipeline
|
90 |
+
olmo_pipe = pipeline("text-generation", model="allenai/OLMo-7B-0724-hf")
|
91 |
print(olmo_pipe("Language modeling is "))
|
92 |
>> 'Language modeling is a branch of natural language processing that aims to...'
|
93 |
```
|
94 |
|
95 |
+
Or, you can make this slightly faster by quantizing the model, e.g. `AutoModelForCausalLM.from_pretrained("allenai/OLMo-7B-0724-hf", torch_dtype=torch.float16, load_in_8bit=True)` (requires `bitsandbytes`).
|
96 |
The quantized model is more sensitive to typing / cuda, so it is recommended to pass the inputs as `inputs.input_ids.to('cuda')` to avoid potential issues.
|
97 |
|
98 |
### Fine-tuning
|