whisper-small-CV-43 / README.md
alikanakar's picture
End of training
d6086bd verified
metadata
language:
  - hi
license: apache-2.0
base_model: openai/whisper-small
tags:
  - generated_from_trainer
datasets:
  - mozilla-foundation/common_voice_16_1
metrics:
  - wer
model-index:
  - name: Whisper Small Tr - CV 43h
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: Common Voice 16.1
          type: mozilla-foundation/common_voice_16_1
          config: tr
          split: None
          args: 'config: tr, split: test'
        metrics:
          - name: Wer
            type: wer
            value: 20.102435079521968

Whisper Small Tr - CV 43h

This model is a fine-tuned version of openai/whisper-small on the Common Voice 16.1 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2371
  • Wer: 20.1024

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 4000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.2134 0.37 500 0.2739 23.3965
0.1845 0.73 1000 0.2587 22.2823
0.1056 1.1 1500 0.2445 21.1214
0.1009 1.46 2000 0.2413 20.7278
0.0963 1.83 2500 0.2329 20.0952
0.0555 2.19 3000 0.2389 20.4421
0.0577 2.56 3500 0.2387 20.2588
0.0512 2.92 4000 0.2371 20.1024

Framework versions

  • Transformers 4.39.3
  • Pytorch 2.2.1+cu121
  • Datasets 2.18.0
  • Tokenizers 0.15.2