alibidaran's picture
update model card README.md
5badafa
|
raw
history blame
2.43 kB
metadata
license: apache-2.0
tags:
  - summarization
  - generated_from_trainer
metrics:
  - rouge
model-index:
  - name: t5-small-medical_transcription
    results: []

t5-small-medical_transcription

This model is a fine-tuned version of t5-small on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2564
  • Rouge1: 0.4958
  • Rouge2: 0.419
  • Rougel: 0.4803
  • Rougelsum: 0.481
  • Gen Len: 18.1147

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5.6e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum Gen Len
0.8608 1.0 559 0.3784 0.4243 0.3455 0.4076 0.4084 17.7384
0.4157 2.0 1118 0.3419 0.4245 0.3503 0.4092 0.4101 17.8612
0.3736 3.0 1677 0.3110 0.4436 0.3699 0.4274 0.4282 18.1187
0.3491 4.0 2236 0.3016 0.4613 0.3882 0.4452 0.4465 18.163
0.3253 5.0 2795 0.2844 0.4702 0.3962 0.4542 0.4545 18.1187
0.3094 6.0 3354 0.2735 0.4767 0.403 0.4607 0.4612 18.1308
0.2983 7.0 3913 0.2652 0.4853 0.4099 0.4692 0.4699 18.0201
0.2908 8.0 4472 0.2601 0.494 0.4175 0.4775 0.4783 18.1247
0.2808 9.0 5031 0.2571 0.4954 0.4169 0.4799 0.4811 18.0926
0.2803 10.0 5590 0.2564 0.4958 0.419 0.4803 0.481 18.1147

Framework versions

  • Transformers 4.26.1
  • Pytorch 1.13.1+cu116
  • Datasets 2.10.1
  • Tokenizers 0.13.2