ali2066's picture
update model card README.md
1f213dc
|
raw
history blame
1.93 kB
metadata
license: apache-2.0
tags:
  - generated_from_trainer
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: distilBERT_token_itr0_0.0001_all_01_03_2022-15_22_12
    results: []

distilBERT_token_itr0_0.0001_all_01_03_2022-15_22_12

This model is a fine-tuned version of bert-base-uncased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2811
  • Precision: 0.3231
  • Recall: 0.5151
  • F1: 0.3971
  • Accuracy: 0.8913

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 1.0 30 0.2881 0.2089 0.3621 0.2650 0.8715
No log 2.0 60 0.2500 0.2619 0.3842 0.3115 0.8845
No log 3.0 90 0.2571 0.2327 0.4338 0.3030 0.8809
No log 4.0 120 0.2479 0.3051 0.4761 0.3719 0.8949
No log 5.0 150 0.2783 0.3287 0.4761 0.3889 0.8936

Framework versions

  • Transformers 4.15.0
  • Pytorch 1.10.1+cu113
  • Datasets 1.18.0
  • Tokenizers 0.10.3