alfredplpl's picture
Update README.md
1acc513 verified
---
library_name: diffusers
license: other
license_name: flux-1-dev-non-commercial-license
license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md
---
# FLUX.1 [dev] Modern Anime FP8 With Quanto
![eyecatch](eyecatch.jpg)
FLUX.1 dev Modern Anime FP8 With Quanto is an anime model with 8-bit float by Quanto library.
We can load this anime model < 15GB VRAM if enable_model_cpu_offload is True.
otherwise, we can load this anime model < 20GB VRAM.
We can run this model on RTX 4090 or NVIDIA L4.
## Usage
- diffusers
1. Install quanto-optinum.
```bash
pip install optimum-quanto
```
2. Run the script:
```python
# Reference 1: https://gist.github.com/AmericanPresidentJimmyCarter/873985638e1f3541ba8b00137e7dacd9
# Reference 2: https://huggingface.co/twodgirl/Flux-dev-optimum-quant-qfloat8
# Reference 2 by https://huggingface.co/twodgirl
# Reference 3: https://huggingface.co/p1atdev/FLUX.1-schnell-t5-xxl-quanto
prompt = "modern anime style, A close-up portrait of a young girl with green hair. Her hair is vibrant and shoulder-length, framing her face softly. She has large, expressive eyes that are slightly tilted upward, with a gentle and calm expression. Her facial features are delicate, with a small nose and soft lips. The background is simple, focusing attention on her face, with soft lighting that highlights her features. The overall style of the illustration is warm and inviting, with a soft color palette and a slightly dreamy atmosphere."
enable_model_cpu_offload=True
import torch
from diffusers import FluxPipeline, FluxTransformer2DModel
from optimum.quanto import QuantizedDiffusersModel, QuantizedTransformersModel
from transformers import T5EncoderModel
from huggingface_hub import snapshot_download
snapshot_download(repo_id="alfredplpl/flux.1-dev-modern-anime-fp8",local_dir="./anime_fp8")
class QuantizedT5EncoderModel(QuantizedTransformersModel):
auto_class = T5EncoderModel
T5EncoderModel.from_config = lambda c: T5EncoderModel(c).to(dtype=torch.float16) # lol
class QuantizedFlux2DModel(QuantizedDiffusersModel):
base_class = FluxTransformer2DModel
pipe = FluxPipeline.from_pretrained("black-forest-labs/FLUX.1-dev",
transformer=None,
text_encoder_2=None,
torch_dtype=torch.bfloat16)
pipe.transformer=QuantizedFlux2DModel.from_pretrained("./anime_fp8/transformer")._wrapped
pipe.text_encoder_2=QuantizedT5EncoderModel.from_pretrained("./anime_fp8/text_encoder_2")._wrapped
pipe.vae=pipe.vae.to(torch.float32)
# Option
if(enable_model_cpu_offload):
pipe.enable_model_cpu_offload()
else:
pipe.text_encoder_2=pipe.text_encoder_2.to("cuda")
pipe.transformer=pipe.transformer.to("cuda")
pipe=pipe.to("cuda")
image = pipe(
prompt,
height=1024,
width=1024,
guidance_scale=3.5,
num_inference_steps=50,
max_sequence_length=512,
generator=torch.Generator(device="cuda").manual_seed(0)
).images[0]
image.save("modern-anime-fp8.png")
```
## How to cast fp8
1. Install quanto-optinum.
```bash
pip install optimum-quanto
```
2. Run the script:
```python
import torch
from safetensors.torch import save_file, load_file
from diffusers import FluxTransformer2DModel
from optimum.quanto import freeze, qfloat8, quantize, QuantizedDiffusersModel
class QuantizedFlux2DModel(QuantizedDiffusersModel):
base_class = FluxTransformer2DModel
transformer = FluxTransformer2DModel.from_single_file("modern-anime.safetensors", torch_dtype=torch.bfloat16)
transformer = QuantizedFlux2DModel.quantize(transformer, weights=qfloat8)
transformer.save_pretrained("transformer")
```